灯笼#
- class langchain_community.vectorstores.lantern.Lantern(connection_string: str, embedding_function: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, collection_name: str = 'langchain', collection_metadata: dict | None = None, pre_delete_collection: bool = False, logger: Logger | None = None, relevance_score_fn: Callable[[float], float] | None = None)[来源]#
Postgres 与 lantern 扩展作为向量存储。
lantern 默认使用顺序扫描。但你可以使用 create_hnsw_index 方法创建一个 HNSW 索引。 - connection_string 是一个 postgres 连接字符串。 - embedding_function 任何实现嵌入功能的函数
langchain.embeddings.base.Embeddings 接口。
- collection_name 是要使用的集合的名称。(默认值:langchain)
- 注意:这是存储嵌入数据的表的名称
表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。
- distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
EUCLIDEAN 是欧几里得距离。
COSINE 是余弦距离。
HAMMING 是汉明距离。
- pre_delete_collection 如果为True,如果集合存在,将删除该集合。
(默认值:False) - 对测试很有用。
属性
distance_function
distance_strategy
embeddings
如果可用,访问查询嵌入对象。
方法
__init__
(connection_string, embedding_function)aadd_documents
(documents, **kwargs)异步运行更多文档通过嵌入并添加到向量存储中。
aadd_texts
(texts[, metadatas, ids])异步运行更多文本通过嵌入并添加到向量存储中。
add_documents
(documents, **kwargs)在向量存储中添加或更新文档。
add_embeddings
(texts, embeddings, metadatas, ...)add_texts
(texts[, metadatas, ids])通过嵌入运行更多文本并将其添加到向量存储中。
adelete
([ids])异步删除通过向量ID或其他条件。
afrom_documents
(documents, embedding, **kwargs)异步返回从文档和嵌入初始化的VectorStore。
afrom_texts
(texts, embedding[, metadatas, ids])异步返回从文本和嵌入初始化的VectorStore。
aget_by_ids
(ids, /)异步通过ID获取文档。
amax_marginal_relevance_search
(query[, k, ...])异步返回使用最大边际相关性选择的文档。
异步返回使用最大边际相关性选择的文档。
as_retriever
(**kwargs)返回从此VectorStore初始化的VectorStoreRetriever。
asearch
(query, search_type, **kwargs)异步返回与查询最相似的文档,使用指定的搜索类型。
asimilarity_search
(query[, k])异步返回与查询最相似的文档。
asimilarity_search_by_vector
(embedding[, k])异步返回与嵌入向量最相似的文档。
异步返回文档和相关分数,范围在[0, 1]之间。
asimilarity_search_with_score
(*args, **kwargs)异步运行带距离的相似性搜索。
connect
()connection_string_from_db_params
(driver, ...)从数据库参数返回连接字符串。
create_hnsw_index
([dims, m, ...])在集合上创建HNSW索引。
delete
([ids])通过ID或UUID删除向量。
from_documents
(documents, embedding[, ...])使用一组文档初始化向量存储。
from_embeddings
(text_embeddings, embedding)从原始文档和预生成的嵌入构建Lantern包装器。
from_existing_index
(embedding[, ...])获取现有Lantern存储的实例。此方法将返回存储的实例,而不会插入任何新的嵌入
from_texts
(texts, embedding[, metadatas, ...])从文本列表初始化Lantern向量存储。
get_by_ids
(ids, /)通过ID获取文档。
max_marginal_relevance_search
(query[, k, ...])返回使用最大边际相关性选择的文档。
返回使用最大边际相关性选择的文档
返回使用最大边际相关性选择的文档及其分数。
返回使用最大边际相关性选择的文档及其分数
search
(query, search_type, **kwargs)使用指定的搜索类型返回与查询最相似的文档。
similarity_search
(query[, k, filter])返回与查询最相似的文档。
similarity_search_by_vector
(embedding[, k, ...])返回与嵌入向量最相似的文档。
返回文档和相关分数,分数范围在[0, 1]之间。
similarity_search_with_score
(query[, k, filter])使用距离进行相似性搜索。
similarity_search_with_score_by_vector
(embedding)- Parameters:
connection_string (str)
embedding_function (Embeddings)
distance_strategy (DistanceStrategy)
collection_name (str)
collection_metadata (可选[字典])
pre_delete_collection (bool)
logger (可选[logging.Logger])
relevance_score_fn (可选[Callable[[float], float]])
- __init__(connection_string: str, embedding_function: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, collection_name: str = 'langchain', collection_metadata: dict | None = None, pre_delete_collection: bool = False, logger: Logger | None = None, relevance_score_fn: Callable[[float], float] | None = None) None [source]#
- Parameters:
connection_string (str)
embedding_function (Embeddings)
distance_strategy (DistanceStrategy)
collection_name (str)
collection_metadata (dict | None)
pre_delete_collection (bool)
logger (Logger | None)
relevance_score_fn (Callable[[float], float] | None)
- Return type:
无
- async aadd_documents(documents: list[Document], **kwargs: Any) list[str] #
通过嵌入异步运行更多文档并将其添加到向量存储中。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果ID的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str] #
异步运行更多文本通过嵌入并添加到向量存储中。
- Parameters:
texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的列表
**kwargs (Any) – 向量存储特定参数。
- Returns:
将文本添加到向量存储中后的ID列表。
- Raises:
ValueError – 如果元数据的数量与文本的数量不匹配。
ValueError – 如果id的数量与文本的数量不匹配。
- Return type:
列表[字符串]
- add_documents(documents: list[Document], **kwargs: Any) list[str] #
在向量存储中添加或更新文档。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果id的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- add_embeddings(texts: List[str], embeddings: List[List[float]], metadatas: List[dict], ids: List[str], **kwargs: Any) None [source]#
- Parameters:
文本 (列表[字符串])
embeddings (列表[列表[浮点数]])
metadatas (列表[字典])
ids (列表[字符串])
kwargs (Any)
- Return type:
无
- add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, ids: List[str] | None = None, **kwargs: Any) List[str] [source]#
通过嵌入运行更多文本并添加到向量存储中。
- Parameters:
texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。
metadatas (List[dict] | None) – 可选的与文本关联的元数据列表。
ids (List[str] | None) – 可选的与文本关联的ID列表。
**kwargs (Any) – 向量存储特定参数。 其中一个 kwargs 应该是 ids,这是一个与文本相关联的 ID 列表。
- Returns:
将文本添加到向量存储中后的ID列表。
- Raises:
ValueError – 如果元数据的数量与文本的数量不匹配。
ValueError – 如果id的数量与文本的数量不匹配。
- Return type:
列表[str]
- async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None #
通过向量ID或其他条件异步删除。
- Parameters:
ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- Returns:
如果删除成功则为真, 否则为假,如果未实现则为无。
- Return type:
可选[布尔]
- async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
异步返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST #
异步返回从文本和嵌入初始化的VectorStore。
- Parameters:
texts (list[str]) – 要添加到向量存储中的文本。
embedding (Embeddings) – 使用的嵌入函数。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的与文本关联的ID列表。
kwargs (Any) – 额外的关键字参数。
- Returns:
VectorStore 从文本和嵌入初始化。
- Return type:
- async aget_by_ids(ids: Sequence[str], /) list[Document] #
通过ID异步获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- async amax_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever #
返回从此VectorStore初始化的VectorStoreRetriever。
- Parameters:
**kwargs (Any) –
传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
- search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
- 可以包括以下内容:
k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值
用于similarity_score_threshold
- fetch_k: 传递给MMR算法的文档数量
(默认:20)
- lambda_mult: MMR返回结果的多样性;
1表示最小多样性,0表示最大多样性。(默认:0.5)
filter: 按文档元数据过滤
- Returns:
VectorStore的检索器类。
- Return type:
示例:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档,使用指定的搜索类型。
- Parameters:
query (str) – 输入文本。
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Return type:
列表[Document]
- async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document] #
异步返回与嵌入向量最相似的文档。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
异步返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
过滤检索到的文档集
- Returns:
(文档,相似度分数)的元组列表
- Return type:
列表[元组[Document, 浮点数]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]] #
异步运行带有距离的相似性搜索。
- Parameters:
*args (Any) – 传递给搜索方法的参数。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
- classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) str [source]#
从数据库参数返回连接字符串。
- Parameters:
driver (str)
host (str)
port (int)
数据库 (str)
用户 (字符串)
password (str)
- Return type:
字符串
- create_hnsw_index(dims: int = 1536, m: int = 16, ef_construction: int = 64, ef_search: int = 64, **_kwargs: Any) None [source]#
在集合上创建HNSW索引。
- Optional Keyword Args for HNSW Index:
引擎: “nmslib”, “faiss”, “lucene”; 默认: “nmslib”
ef: 在k-NN搜索期间使用的动态列表的大小。较高的值会导致更准确但更慢的搜索;默认值:64
ef_construction: 用于k-NN图创建期间的动态列表大小。 较高的值会导致更准确的图,但索引速度较慢; 默认值:64
m: 为每个新元素创建的双向链接数量。对内存消耗有很大影响。范围在2到100之间;默认值:16
dims: 集合中向量的维度。默认值:1536
- Parameters:
dims (int)
m (int)
ef_construction (int)
ef_search (int)
_kwargs (Any)
- Return type:
无
- delete(ids: List[str] | None = None, **kwargs: Any) None [来源]#
通过ID或UUID删除向量。
- Parameters:
ids (List[str] | None) – 要删除的ID列表。
kwargs (Any)
- Return type:
无
- classmethod from_documents(documents: List[Document], embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: List[str] | None = None, pre_delete_collection: bool = False, **kwargs: Any) Lantern [source]#
使用一组文档初始化向量存储。
需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。
connection_string 是一个 postgres 连接字符串。
documents 是用于初始化向量存储的
Document
列表- embedding 是
Embeddings
,将用于 嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。
- embedding 是
- collection_name 是要使用的集合的名称。(默认值:langchain)
- 注意:这是存储嵌入数据的表的名称
表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。
- distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
EUCLIDEAN 是欧几里得距离。
COSINE 是余弦距离。
HAMMING 是汉明距离。
ids 要插入到集合中的行ID。
- pre_delete_collection 如果为True,如果集合存在,将删除该集合。
(默认值: False) - 对测试很有用。
- Parameters:
文档 (列表[Document])
embedding (Embeddings)
collection_name (str)
distance_strategy (DistanceStrategy)
ids (列表[字符串] | 无)
pre_delete_collection (bool)
kwargs (Any)
- Return type:
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: List[dict] | None = None, collection_name: str = 'langchain', ids: List[str] | None = None, pre_delete_collection: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, **kwargs: Any) Lantern [source]#
从原始文档和预生成的嵌入中构建Lantern包装器。
需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。
列表 ids, text_embeddings, metadatas 中元素的顺序应匹配,以便每一行都能与正确的值关联。
connection_string 是用于 postgres 数据库的完整连接字符串
- text_embeddings 是一个包含元组 (text, embedding) 的数组
用于插入到集合中。
- embedding 是
Embeddings
,将用于 嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。
- embedding 是
metadatas 要插入集合的行元数据。
- collection_name 是要使用的集合的名称。(默认值:langchain)
- 注意:这是存储嵌入数据的表的名称
表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。
ids 要插入到集合中的行ID。
- pre_delete_collection 如果为True,如果集合存在,将删除该集合。
(默认值: False) - 对测试很有用。
- distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
EUCLIDEAN 是欧几里得距离。
COSINE 是余弦距离。
HAMMING 是汉明距离。
- Parameters:
text_embeddings (List[Tuple[str, List[float]]])
embedding (Embeddings)
metadatas (列表[字典] | 无)
collection_name (str)
ids (列表[字符串] | 无)
pre_delete_collection (bool)
distance_strategy (DistanceStrategy)
kwargs (Any)
- Return type:
- classmethod from_existing_index(embedding: Embeddings, collection_name: str = 'langchain', pre_delete_collection: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, **kwargs: Any) Lantern [source]#
获取现有Lantern存储的实例。此方法将返回存储的实例,而不会插入任何新的嵌入。
需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。
connection_string 是一个 postgres 连接字符串。
- embedding 是
Embeddings
,将用于 嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。
- embedding 是
- collection_name 是要使用的集合的名称。(默认值:langchain)
- 注意:这是存储嵌入数据的表的名称
表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。
ids 要插入到集合中的行ID。
- pre_delete_collection 如果为True,如果集合存在,将删除该集合。
(默认值: False) - 对测试很有用。
- distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
EUCLIDEAN 是欧几里得距离。
COSINE 是余弦距离。
HAMMING 是汉明距离。
- Parameters:
embedding (Embeddings)
collection_name (str)
pre_delete_collection (bool)
distance_strategy (DistanceStrategy)
kwargs (Any)
- Return type:
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: List[str] | None = None, pre_delete_collection: bool = False, **kwargs: Any) Lantern [source]#
从文本列表初始化Lantern向量存储。 嵌入将使用提供的embedding类生成。
列表 ids, texts, metadatas 中元素的顺序应匹配,以便每一行都能与正确的值关联。
需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。
connection_string 是用于 postgres 数据库的完整连接字符串
texts 要插入到集合中的文本。
- embedding 是
Embeddings
,将用于 嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。
- embedding 是
metadatas 要插入集合的行元数据。
- collection_name 是要使用的集合的名称。(默认值:langchain)
- 注意:这是存储嵌入数据的表的名称
表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。
- distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
EUCLIDEAN 是欧几里得距离。
COSINE 是余弦距离。
HAMMING 是汉明距离。
ids 要插入到集合中的行ID。
- pre_delete_collection 如果为True,如果集合存在,将删除该集合。
(默认值: False) - 对测试很有用。
- Parameters:
文本 (列表[字符串])
embedding (Embeddings)
metadatas (列表[字典] | 无)
collection_name (str)
distance_strategy (DistanceStrategy)
ids (列表[字符串] | 无)
pre_delete_collection (bool)
kwargs (Any)
- Return type:
- get_by_ids(ids: Sequence[str], /) list[Document] #
通过ID获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document] [来源]#
返回使用最大边际相关性选择的文档。
- Maximal marginal relevance optimizes for similarity to query AND diversity
在选定的文档中。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document] [source]#
- Return docs selected using the maximal marginal relevance
转换为嵌入向量。
- Maximal marginal relevance optimizes for similarity to query AND diversity
在选定的文档中。
- Parameters:
embedding (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- max_marginal_relevance_search_with_score(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: dict | None = None, **kwargs: Any) List[Tuple[Document, float]] [source]#
返回使用最大边际相关性选择的文档及其分数。
- Maximal marginal relevance optimizes for similarity to query AND diversity
在选定的文档中。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。
kwargs (Any)
- Returns:
- 通过最大边际选择的文档列表
与查询的相关性及每个文档的得分。
- Return type:
列表[元组[Document, 浮点数]]
- max_marginal_relevance_search_with_score_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Tuple[Document, float]] [source]#
- Return docs selected using the maximal marginal relevance with score
转换为嵌入向量。
- Maximal marginal relevance optimizes for similarity to query AND diversity
在选定的文档中。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。
kwargs (Any)
- Returns:
- 通过最大边际选择的文档列表
与查询的相关性及每个文档的得分。
- Return type:
列表[元组[Document, 浮点数]]
- search(query: str, search_type: str, **kwargs: Any) list[Document] #
使用指定的搜索类型返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- similarity_search(query: str, k: int = 4, filter: dict | None = None, **kwargs: Any) List[Document] [source]#
返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
filter (字典 | 无)
**kwargs
- Returns:
与查询最相似的文档列表。
- Return type:
列表[文档]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: dict | None = None, **kwargs: Any) List[Document] [source]#
返回与嵌入向量最相似的文档。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
filter (字典 | 无)
**kwargs
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[文档]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
用于过滤检索到的文档集。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
使用 Lantern 的示例