CPU 调度器是如何工作的?#
NumPy 调度器基于多源编译,这意味着采用某个源代码并使用不同的编译器标志多次编译它,同时使用不同的 C 定义影响代码路径.这使得每个编译对象能够启用特定的指令集,具体取决于所需的优化,并最终将返回的对象链接在一起.
此机制应支持所有编译器,并且不需要任何特定于编译器的扩展,但同时它增加了一些正常编译的步骤,如下所述.
1- 配置#
在通过上述两个命令参数开始构建源文件之前,用户配置所需的优化:
--cpu-baseline
: 所需优化的最小集合.--cpu-dispatch
: 额外优化的分发集合.
2- 探索环境#
在这一部分,我们检查编译器和平台架构,并缓存一些中间结果以加快重新构建的速度.
3- 验证请求的优化#
通过针对编译器进行测试,并根据请求的优化查看编译器可以支持的内容.
4- 生成主配置头文件#
生成的头文件 _cpu_dispatch.h
包含了在前一步中验证过的所需优化的所有定义和指令集头文件.
它还包含额外的 C 定义,这些定义用于定义 NumPy 的 Python 级模块属性 __cpu_baseline__
和 __cpu_dispatch__
.
这个标题里有什么?
示例头文件由gcc在X86机器上动态生成.编译器支持``–cpu-baseline=”sse sse2 sse3”和
–cpu-dispatch=”ssse3 sse41”``,结果如下.
// The header should be located at numpy/numpy/_core/src/common/_cpu_dispatch.h
/**NOTE
** C definitions prefixed with "NPY_HAVE_" represent
** the required optimizations.
**
** C definitions prefixed with 'NPY__CPU_TARGET_' are protected and
** shouldn't be used by any NumPy C sources.
*/
/******* baseline features *******/
/** SSE **/
#define NPY_HAVE_SSE 1
#include <xmmintrin.h>
/** SSE2 **/
#define NPY_HAVE_SSE2 1
#include <emmintrin.h>
/** SSE3 **/
#define NPY_HAVE_SSE3 1
#include <pmmintrin.h>
/******* dispatch-able features *******/
#ifdef NPY__CPU_TARGET_SSSE3
/** SSSE3 **/
#define NPY_HAVE_SSSE3 1
#include <tmmintrin.h>
#endif
#ifdef NPY__CPU_TARGET_SSE41
/** SSE41 **/
#define NPY_HAVE_SSE41 1
#include <smmintrin.h>
#endif
基线特性 是通过 --cpu-baseline
配置的最小必需优化集合.它们没有预处理器保护,并且总是开启的,这意味着它们可以在任何源代码中使用.
这是否意味着 NumPy 的基础设施将编译器的基线功能标志传递给所有源代码?
当然,是的.但是 可调度资源 的处理方式不同.
如果用户在构建期间指定了某些 baseline features,但在运行时机器甚至不支持这些功能怎么办?编译后的代码会通过这些定义之一被调用,还是编译器本身会根据提供的命令行编译器标志自动生成/向量化某些代码?
在加载 NumPy 模块期间,有一个验证步骤会检测到这种行为.它会引发一个 Python 运行时错误以通知用户.这是为了防止 CPU 达到非法指令错误导致段错误.
可分发特性 是我们通过 --cpu-dispatch
配置的一组额外优化.它们默认不激活,并且总是由其他以 NPY__CPU_TARGET_
为前缀的 C 定义保护.C 定义 NPY__CPU_TARGET_
仅在 可分发源代码 中启用.
5- 可调度资源和配置语句#
可分发源文件是特殊的 C 文件,可以多次使用不同的编译器标志和不同的 C 定义进行编译.这些影响代码路径,以根据必须在 C 注释 (/**/)
之间声明并从每个可分发源文件顶部的特殊标记 @targets 开始的”配置语句”为每个编译对象启用某些指令集.同时,如果通过命令参数 --disable-optimization
禁用了优化,可分发源文件将被视为普通 C 源文件.
什么是配置语句?
配置语句是一种组合在一起的关键字,用于确定可调度源的所需优化.
示例:
/*@targets avx2 avx512f vsx2 vsx3 asimd asimdhp */
// C code
这些关键字主要代表通过 --cpu-dispatch
配置的额外优化,但它也可以代表其他选项,例如:
目标组:预配置的配置语句,用于从可调度源外部管理所需的优化.
策略:用于更改默认行为或强制编译器执行某些操作的选项集合.
“baseline”:一个独特的关键词,代表通过
--cpu-baseline
配置的最小优化
Numpy的基础设施分四个步骤处理可分派源:
(A) 识别: 就像源模板和 F2PY 一样,可分派源需要一个特殊的扩展
*.dispatch.c
来标记 C 可分派源文件,对于 C++ 则是*.dispatch.cpp
或*.dispatch.cxx
注意: C++ 尚不支持.(B) 解析和验证: 在这一步中,通过上一步过滤的可调度源被解析并通过每个源的配置语句逐一验证,以确定所需的优化.
(C) 包装:这是 NumPy 基础设施采用的方法,已被证明足够灵活,能够通过不同的 C 定义和标志多次编译单个源代码,从而影响代码路径.该过程通过为每个所需的优化创建一个临时的 C 源代码来实现,该优化与额外的优化相关,其中包含 C 定义的声明,并通过 C 指令 #include 包含涉及的源代码.为了更清楚地说明,请查看以下 AVX512F 的代码:
/* * this definition is used by NumPy utilities as suffixes for the * exported symbols */ #define NPY__CPU_TARGET_CURRENT AVX512F /* * The following definitions enable * definitions of the dispatch-able features that are defined within the main * configuration header. These are definitions for the implied features. */ #define NPY__CPU_TARGET_SSE #define NPY__CPU_TARGET_SSE2 #define NPY__CPU_TARGET_SSE3 #define NPY__CPU_TARGET_SSSE3 #define NPY__CPU_TARGET_SSE41 #define NPY__CPU_TARGET_POPCNT #define NPY__CPU_TARGET_SSE42 #define NPY__CPU_TARGET_AVX #define NPY__CPU_TARGET_F16C #define NPY__CPU_TARGET_FMA3 #define NPY__CPU_TARGET_AVX2 #define NPY__CPU_TARGET_AVX512F // our dispatch-able source #include "/the/absuolate/path/of/hello.dispatch.c"
(D) 可分发配置头文件:基础设施为每个可分发的源生成一个配置头文件,该头文件主要包含两个用于标识生成对象的抽象 C 宏,因此它们可以用于通过任何 C 源在运行时分发生成对象中的某些符号.它还用于前向声明.
生成的头文件取自分发源文件的名称,去掉扩展名并替换为
.h
,例如假设我们有一个名为hello.dispatch.c
的分发源文件,并且包含以下内容:// hello.dispatch.c /*@targets baseline sse42 avx512f */ #include <stdio.h> #include "numpy/utils.h" // NPY_CAT, NPY_TOSTR #ifndef NPY__CPU_TARGET_CURRENT // wrapping the dispatch-able source only happens to the additional optimizations // but if the keyword 'baseline' provided within the configuration statements, // the infrastructure will add extra compiling for the dispatch-able source by // passing it as-is to the compiler without any changes. #define CURRENT_TARGET(X) X #define NPY__CPU_TARGET_CURRENT baseline // for printing only #else // since we reach to this point, that's mean we're dealing with // the additional optimizations, so it could be SSE42 or AVX512F #define CURRENT_TARGET(X) NPY_CAT(NPY_CAT(X, _), NPY__CPU_TARGET_CURRENT) #endif // Macro 'CURRENT_TARGET' adding the current target as suffux to the exported symbols, // to avoid linking duplications, NumPy already has a macro called // 'NPY_CPU_DISPATCH_CURFX' similar to it, located at // numpy/numpy/_core/src/common/npy_cpu_dispatch.h // NOTE: we tend to not adding suffixes to the baseline exported symbols void CURRENT_TARGET(simd_whoami)(const char *extra_info) { printf("I'm " NPY_TOSTR(NPY__CPU_TARGET_CURRENT) ", %s\n", extra_info); }
现在假设你将 hello.dispatch.c 附加到源代码树中,那么基础设施应该生成一个临时的配置头文件,称为 hello.dispatch.h,该头文件可以被源代码树中的任何源文件访问,并且它应该包含以下代码:
#ifndef NPY__CPU_DISPATCH_EXPAND_ // To expand the macro calls in this header #define NPY__CPU_DISPATCH_EXPAND_(X) X #endif // Undefining the following macros, due to the possibility of including config headers // multiple times within the same source and since each config header represents // different required optimizations according to the specified configuration // statements in the dispatch-able source that derived from it. #undef NPY__CPU_DISPATCH_BASELINE_CALL #undef NPY__CPU_DISPATCH_CALL // nothing strange here, just a normal preprocessor callback // enabled only if 'baseline' specified within the configuration statements #define NPY__CPU_DISPATCH_BASELINE_CALL(CB, ...) \ NPY__CPU_DISPATCH_EXPAND_(CB(__VA_ARGS__)) // 'NPY__CPU_DISPATCH_CALL' is an abstract macro is used for dispatching // the required optimizations that specified within the configuration statements. // // @param CHK, Expected a macro that can be used to detect CPU features // in runtime, which takes a CPU feature name without string quotes and // returns the testing result in a shape of boolean value. // NumPy already has macro called "NPY_CPU_HAVE", which fits this requirement. // // @param CB, a callback macro that expected to be called multiple times depending // on the required optimizations, the callback should receive the following arguments: // 1- The pending calls of @param CHK filled up with the required CPU features, // that need to be tested first in runtime before executing call belong to // the compiled object. // 2- The required optimization name, same as in 'NPY__CPU_TARGET_CURRENT' // 3- Extra arguments in the macro itself // // By default the callback calls are sorted depending on the highest interest // unless the policy "$keep_sort" was in place within the configuration statements // see "Dive into the CPU dispatcher" for more clarification. #define NPY__CPU_DISPATCH_CALL(CHK, CB, ...) \ NPY__CPU_DISPATCH_EXPAND_(CB((CHK(AVX512F)), AVX512F, __VA_ARGS__)) \ NPY__CPU_DISPATCH_EXPAND_(CB((CHK(SSE)&&CHK(SSE2)&&CHK(SSE3)&&CHK(SSSE3)&&CHK(SSE41)), SSE41, __VA_ARGS__))
在上面的背景下使用配置头的示例:
// NOTE: The following macros are only defined for demonstration purposes only. // NumPy already has a collections of macros located at // numpy/numpy/_core/src/common/npy_cpu_dispatch.h, that covers all dispatching // and declarations scenarios. #include "numpy/npy_cpu_features.h" // NPY_CPU_HAVE #include "numpy/utils.h" // NPY_CAT, NPY_EXPAND // An example for setting a macro that calls all the exported symbols at once // after checking if they're supported by the running machine. #define DISPATCH_CALL_ALL(FN, ARGS) \ NPY__CPU_DISPATCH_CALL(NPY_CPU_HAVE, DISPATCH_CALL_ALL_CB, FN, ARGS) \ NPY__CPU_DISPATCH_BASELINE_CALL(DISPATCH_CALL_BASELINE_ALL_CB, FN, ARGS) // The preprocessor callbacks. // The same suffixes as we define it in the dispatch-able source. #define DISPATCH_CALL_ALL_CB(CHECK, TARGET_NAME, FN, ARGS) \ if (CHECK) { NPY_CAT(NPY_CAT(FN, _), TARGET_NAME) ARGS; } #define DISPATCH_CALL_BASELINE_ALL_CB(FN, ARGS) \ FN NPY_EXPAND(ARGS); // An example for setting a macro that calls the exported symbols of highest // interest optimization, after checking if they're supported by the running machine. #define DISPATCH_CALL_HIGH(FN, ARGS) \ if (0) {} \ NPY__CPU_DISPATCH_CALL(NPY_CPU_HAVE, DISPATCH_CALL_HIGH_CB, FN, ARGS) \ NPY__CPU_DISPATCH_BASELINE_CALL(DISPATCH_CALL_BASELINE_HIGH_CB, FN, ARGS) // The preprocessor callbacks // The same suffixes as we define it in the dispatch-able source. #define DISPATCH_CALL_HIGH_CB(CHECK, TARGET_NAME, FN, ARGS) \ else if (CHECK) { NPY_CAT(NPY_CAT(FN, _), TARGET_NAME) ARGS; } #define DISPATCH_CALL_BASELINE_HIGH_CB(FN, ARGS) \ else { FN NPY_EXPAND(ARGS); } // NumPy has a macro called 'NPY_CPU_DISPATCH_DECLARE' can be used // for forward declarations any kind of prototypes based on // 'NPY__CPU_DISPATCH_CALL' and 'NPY__CPU_DISPATCH_BASELINE_CALL'. // However in this example, we just handle it manually. void simd_whoami(const char *extra_info); void simd_whoami_AVX512F(const char *extra_info); void simd_whoami_SSE41(const char *extra_info); void trigger_me(void) { // bring the auto-generated config header // which contains config macros 'NPY__CPU_DISPATCH_CALL' and // 'NPY__CPU_DISPATCH_BASELINE_CALL'. // it is highly recommended to include the config header before executing // the dispatching macros in case if there's another header in the scope. #include "hello.dispatch.h" DISPATCH_CALL_ALL(simd_whoami, ("all")) DISPATCH_CALL_HIGH(simd_whoami, ("the highest interest")) // An example of including multiple config headers in the same source // #include "hello2.dispatch.h" // DISPATCH_CALL_HIGH(another_function, ("the highest interest")) }