import os
from pandasai.agent.agent import Agent
from pandasai.ee.agents.judge_agent import JudgeAgent
os.environ["PANDASAI_API_KEY"]="$2a****************************"judge = JudgeAgent()agent = Agent('github-stars.csv', judge=judge)print(agent.chat("return total stars count"))
from pandasai.ee.agents.judge_agent import JudgeAgent
from pandasai.llm.openai import OpenAI
# can be used with all LLM'sllm = OpenAI("openai_key")judge_agent = JudgeAgent(config={"llm": llm})judge_agent.evaluate( query="return total github star count for year 2023", code="""sql_query = "SELECT COUNT(`users`.`login`) AS user_count, DATE_FORMAT(`users`.`starredAt`,'%Y-%m') AS starred_at_by_month FROM `users` WHERE `users`.`starredAt` BETWEEN '2023-01-01' AND '2023-12-31' GROUP BY starred_at_by_month ORDER BY starred_at_by_month asc"
data = execute_sql_query(sql_query) plt.plot(data['starred_at_by_month'], data['user_count']) plt.xlabel('Month') plt.ylabel('User Count') plt.title('GitHub Star Count Per Month - Year 2023') plt.legend(loc='best') plt.savefig('/Users/arslan/Documents/SinapTik/pandas-ai/exports/charts/temp_chart.png') result ={'type':'plot','value':'/Users/arslan/Documents/SinapTik/pandas-ai/exports/charts/temp_chart.png'}""",)