使用 SUOD 的快速训练

快速训练和预测:通过利用 SUOD 框架,可以在 PyOD 中训练和预测大量检测模型。参见 SUOD 论文SUOD 示例

from pyod.models.suod import SUOD

# initialized a group of outlier detectors for acceleration
detector_list = [LOF(n_neighbors=15), LOF(n_neighbors=20),
                 LOF(n_neighbors=25), LOF(n_neighbors=35),
                 COPOD(), IForest(n_estimators=100),
                 IForest(n_estimators=200)]

# decide the number of parallel process, and the combination method
# then clf can be used as any outlier detection model
clf = SUOD(base_estimators=detector_list, n_jobs=2, combination='average',
           verbose=False)