dedensify#
- dedensify(G, threshold, prefix=None, copy=True)[source]#
压缩高度节点周围的邻域
通过添加压缩节点来减少与高度节点的边数,这些压缩节点汇总了相同类型到高度节点的多条边(节点度数大于给定阈值的节点)。去密集化还具有减少高度节点周围边数的额外好处。当前实现支持具有单一边类型的图。
- Parameters:
- G: 图
一个 networkx 图
- threshold: int
节点被视为高度节点的最小度数阈值。阈值必须大于或等于2。
- prefix: str 或 None, 可选 (默认: None)
表示压缩节点的可选前缀
- copy: bool, 可选 (默认: True)
指示去密集化是否应在原地进行
- Returns:
- 去密集化的 networkx 图(图, 集合)
去密集化图和压缩节点的2元组
Notes
根据[1]中的算法,通过添加压缩节点来压缩/解压缩高度节点周围的邻域,从而删除图中的边。去密集化仅在这样做会减少给定图中的总边数时才添加压缩节点。当前实现支持具有单一边类型的图。
References
[1]Maccioni, A., & Abadi, D. J. (2016, August). Scalable pattern matching over compressed graphs via dedensification. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1755-1764). http://www.cs.umd.edu/~abadi/papers/graph-dedense.pdf
Examples
去密集化仅在这样做会导致更少的边时才添加压缩节点:
>>> original_graph = nx.DiGraph() >>> original_graph.add_nodes_from( ... ["1", "2", "3", "4", "5", "6", "A", "B", "C"] ... ) >>> original_graph.add_edges_from( ... [ ... ("1", "C"), ("1", "B"), ... ("2", "C"), ("2", "B"), ("2", "A"), ... ("3", "B"), ("3", "A"), ("3", "6"), ... ("4", "C"), ("4", "B"), ("4", "A"), ... ("5", "B"), ("5", "A"), ... ("6", "5"), ... ("A", "6") ... ] ... ) >>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2) >>> original_graph.number_of_edges() 15 >>> c_graph.number_of_edges() 14
去密集化的有向图可以“密集化”以重建原始图:
>>> original_graph = nx.DiGraph() >>> original_graph.add_nodes_from( ... ["1", "2", "3", "4", "5", "6", "A", "B", "C"] ... ) >>> original_graph.add_edges_from( ... [ ... ("1", "C"), ("1", "B"), ... ("2", "C"), ("2", "B"), ("2", "A"), ... ("3", "B"), ("3", "A"), ("3", "6"), ... ("4", "C"), ("4", "B"), ("4", "A"), ... ("5", "B"), ("5", "A"), ... ("6", "5"), ... ("A", "6") ... ] ... ) >>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2) >>> # 将压缩图重新密集化为原始图 >>> for c_node in c_nodes: ... all_neighbors = set(nx.all_neighbors(c_graph, c_node)) ... out_neighbors = set(c_graph.neighbors(c_node)) ... for out_neighbor in out_neighbors: ... c_graph.remove_edge(c_node, out_neighbor) ... in_neighbors = all_neighbors - out_neighbors ... for in_neighbor in in_neighbors: ... c_graph.remove_edge(in_neighbor, c_node) ... for out_neighbor in out_neighbors: ... c_graph.add_edge(in_neighbor, out_neighbor) ... c_graph.remove_node(c_node) ... >>> nx.is_isomorphic(original_graph, c_graph) True