重复标签#

Index 对象不需要是唯一的;你可以有重复的行或列标签。这可能一开始有点令人困惑。如果你熟悉 SQL,你知道行标签类似于表上的主键,你永远不会希望在 SQL 表中有重复项。但 pandas 的角色之一是在数据进入下游系统之前清理混乱的现实世界数据。而现实世界的数据有重复项,即使在应该是唯一的字段中也是如此。

本节描述了重复标签如何改变某些操作的行为,以及如何在操作过程中防止重复标签的出现,或者在出现重复标签时如何检测它们。

In [1]: import pandas as pd

In [2]: import numpy as np

重复标签的后果#

一些 pandas 方法(例如 Series.reindex())在存在重复项时无法工作。输出无法确定,因此 pandas 会抛出异常。

In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])

In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])

File /home/pandas/pandas/core/series.py:4789, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
   4772 @doc(
   4773     NDFrame.reindex,  # type: ignore[has-type]
   4774     klass=_shared_doc_kwargs["klass"],
   (...)
   4787     tolerance=None,
   4788 ) -> Series:
-> 4789     return super().reindex(
   4790         index=index,
   4791         method=method,
   4792         level=level,
   4793         fill_value=fill_value,
   4794         limit=limit,
   4795         tolerance=tolerance,
   4796         copy=copy,
   4797     )

File /home/pandas/pandas/core/generic.py:5347, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
   5344     return self._reindex_multi(axes, fill_value)
   5346 # perform the reindex on the axes
-> 5347 return self._reindex_axes(
   5348     axes, level, limit, tolerance, method, fill_value
   5349 ).__finalize__(self, method="reindex")

File /home/pandas/pandas/core/generic.py:5369, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value)
   5366     continue
   5368 ax = self._get_axis(a)
-> 5369 new_index, indexer = ax.reindex(
   5370     labels, level=level, limit=limit, tolerance=tolerance, method=method
   5371 )
   5373 axis = self._get_axis_number(a)
   5374 obj = obj._reindex_with_indexers(
   5375     {axis: [new_index, indexer]},
   5376     fill_value=fill_value,
   5377     allow_dups=False,
   5378 )

File /home/pandas/pandas/core/indexes/base.py:4191, in Index.reindex(self, target, method, level, limit, tolerance)
   4188     raise ValueError("cannot handle a non-unique multi-index!")
   4189 elif not self.is_unique:
   4190     # GH#42568
-> 4191     raise ValueError("cannot reindex on an axis with duplicate labels")
   4192 else:
   4193     indexer, _ = self.get_indexer_non_unique(target)

ValueError: cannot reindex on an axis with duplicate labels

其他方法,如索引,可能会产生非常令人惊讶的结果。通常,使用标量进行索引会 降低维度 。使用标量对 DataFrame 进行切片将返回一个 Series 。使用标量对 Series 进行切片将返回一个标量。但在有重复项的情况下,情况并非如此。

In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])

In [6]: df1
Out[6]: 
   A  A  B
0  0  1  2
1  3  4  5

我们在列中有重复项。如果我们切片 'B' ,我们会得到一个 Series

In [7]: df1["B"]  # a series
Out[7]: 
0    2
1    5
Name: B, dtype: int64

但是对 'A' 进行切片会返回一个 DataFrame

In [8]: df1["A"]  # a DataFrame
Out[8]: 
   A  A
0  0  1
1  3  4

这也适用于行标签

In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])

In [10]: df2
Out[10]: 
   A
a  0
a  1
b  2

In [11]: df2.loc["b", "A"]  # a scalar
Out[11]: 2

In [12]: df2.loc["a", "A"]  # a Series
Out[12]: 
a    0
a    1
Name: A, dtype: int64

重复标签检测#

你可以检查一个 Index (存储行或列标签)是否唯一,使用 Index.is_unique 方法:

In [13]: df2
Out[13]: 
   A
a  0
a  1
b  2

In [14]: df2.index.is_unique
Out[14]: False

In [15]: df2.columns.is_unique
Out[15]: True

备注

检查索引是否唯一对于大型数据集来说是比较耗时的。pandas 会缓存这个结果,所以在同一个索引上重新检查会非常快。

Index.duplicated() 将返回一个布尔值的 ndarray,指示标签是否重复。

In [16]: df2.index.duplicated()
Out[16]: array([False,  True, False])

这可以作为一个布尔过滤器来删除重复的行。

In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]: 
   A
a  0
b  2

如果你需要额外的逻辑来处理重复的标签,而不是仅仅丢弃重复项,使用 groupby() 对索引进行分组是一个常见的技巧。例如,我们将通过取具有相同标签的所有行的平均值来解决重复问题。

In [18]: df2.groupby(level=0).mean()
Out[18]: 
     A
a  0.5
b  2.0

不允许重复标签#

Added in version 1.2.0.

如上所述,在读取原始数据时处理重复项是一个重要的功能。也就是说,你可能希望避免在数据处理管道中引入重复项(通过 pandas.concat()rename() 等方法)。SeriesDataFrame 通过调用 .set_flags(allows_duplicate_labels=False) 来*禁止*重复标签(默认是允许的)。如果有重复标签,将引发异常。

In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)

File /home/pandas/pandas/core/generic.py:464, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
    462 df = self.copy(deep=False)
    463 if allows_duplicate_labels is not None:
--> 464     df.flags["allows_duplicate_labels"] = allows_duplicate_labels
    465 return df

File /home/pandas/pandas/core/flags.py:118, in Flags.__setitem__(self, key, value)
    116 if key not in self._keys:
    117     raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 118 setattr(self, key, value)

File /home/pandas/pandas/core/flags.py:105, in Flags.allows_duplicate_labels(self, value)
    103 if not value:
    104     for ax in obj.axes:
--> 105         ax._maybe_check_unique()
    107 self._allows_duplicate_labels = value

File /home/pandas/pandas/core/indexes/base.py:703, in Index._maybe_check_unique(self)
    700 duplicates = self._format_duplicate_message()
    701 msg += f"\n{duplicates}"
--> 703 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [1, 2]

这适用于 DataFrame 的行和列标签

In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 
Out[20]: 
   A  B  C
0  0  1  2
1  3  4  5

这个属性可以通过 allows_duplicate_labels 进行检查或设置,该属性指示该对象是否可以具有重复标签。

In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 

In [22]: df
Out[22]: 
   A
x  0
y  1
X  2
Y  3

In [23]: df.flags.allows_duplicate_labels
Out[23]: False

DataFrame.set_flags() 可以用来返回一个新的 DataFrame ,其属性如 allows_duplicate_labels 设置为某个值

In [24]: df2 = df.set_flags(allows_duplicate_labels=True)

In [25]: df2.flags.allows_duplicate_labels
Out[25]: True

返回的新 DataFrame 是与旧 DataFrame 相同数据的视图。或者属性可以直接在同一对象上设置。

In [26]: df2.flags.allows_duplicate_labels = False

In [27]: df2.flags.allows_duplicate_labels
Out[27]: False

在处理原始、混乱的数据时,你可能首先读入混乱的数据(可能包含重复标签),去重,然后禁止未来的重复,以确保你的数据管道不会引入重复项。

>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first()  # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False  # disallow going forward

在带有重复标签的 SeriesDataFrame 上设置 allows_duplicate_labels=False 或在不允许重复的 SeriesDataFrame 上执行引入重复标签的操作将引发 errors.DuplicateLabelError

In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)

File /home/pandas/pandas/core/frame.py:5583, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   5461 """
   5462 Rename columns or index labels.
   5463 
   (...)
   5580 4  3  6
   5581 """
   5582 self._check_copy_deprecation(copy)
-> 5583 return super()._rename(
   5584     mapper=mapper,
   5585     index=index,
   5586     columns=columns,
   5587     axis=axis,
   5588     inplace=inplace,
   5589     level=level,
   5590     errors=errors,
   5591 )

File /home/pandas/pandas/core/generic.py:1065, in NDFrame._rename(self, mapper, index, columns, axis, inplace, level, errors)
   1063     return None
   1064 else:
-> 1065     return result.__finalize__(self, method="rename")

File /home/pandas/pandas/core/generic.py:6030, in NDFrame.__finalize__(self, other, method, **kwargs)
   6023 if other.attrs:
   6024     # We want attrs propagation to have minimal performance
   6025     # impact if attrs are not used; i.e. attrs is an empty dict.
   6026     # One could make the deepcopy unconditionally, but a deepcopy
   6027     # of an empty dict is 50x more expensive than the empty check.
   6028     self.attrs = deepcopy(other.attrs)
-> 6030 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6031 # For subclasses using _metadata.
   6032 for name in set(self._metadata) & set(other._metadata):

File /home/pandas/pandas/core/flags.py:105, in Flags.allows_duplicate_labels(self, value)
    103 if not value:
    104     for ax in obj.axes:
--> 105         ax._maybe_check_unique()
    107 self._allows_duplicate_labels = value

File /home/pandas/pandas/core/indexes/base.py:703, in Index._maybe_check_unique(self)
    700 duplicates = self._format_duplicate_message()
    701 msg += f"\n{duplicates}"
--> 703 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
X        [0, 2]
Y        [1, 3]

此错误消息包含重复的标签,以及所有重复项(包括“原始”)在 SeriesDataFrame 中的数字位置。

重复标签传播#

一般来说,禁止重复是“粘性的”。它在操作中得以保留。

In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)

In [30]: s1
Out[30]: 
a    0
b    0
dtype: int64

In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})

File /home/pandas/pandas/core/series.py:4727, in Series.rename(self, index, axis, copy, inplace, level, errors)
   4720     axis = self._get_axis_number(axis)
   4722 if callable(index) or is_dict_like(index):
   4723     # error: Argument 1 to "_rename" of "NDFrame" has incompatible
   4724     # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
   4725     # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
   4726     # Hashable], Callable[[Any], Hashable], None]"
-> 4727     return super()._rename(
   4728         index,  # type: ignore[arg-type]
   4729         inplace=inplace,
   4730         level=level,
   4731         errors=errors,
   4732     )
   4733 else:
   4734     return self._set_name(index, inplace=inplace)

File /home/pandas/pandas/core/generic.py:1065, in NDFrame._rename(self, mapper, index, columns, axis, inplace, level, errors)
   1063     return None
   1064 else:
-> 1065     return result.__finalize__(self, method="rename")

File /home/pandas/pandas/core/generic.py:6030, in NDFrame.__finalize__(self, other, method, **kwargs)
   6023 if other.attrs:
   6024     # We want attrs propagation to have minimal performance
   6025     # impact if attrs are not used; i.e. attrs is an empty dict.
   6026     # One could make the deepcopy unconditionally, but a deepcopy
   6027     # of an empty dict is 50x more expensive than the empty check.
   6028     self.attrs = deepcopy(other.attrs)
-> 6030 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6031 # For subclasses using _metadata.
   6032 for name in set(self._metadata) & set(other._metadata):

File /home/pandas/pandas/core/flags.py:105, in Flags.allows_duplicate_labels(self, value)
    103 if not value:
    104     for ax in obj.axes:
--> 105         ax._maybe_check_unique()
    107 self._allows_duplicate_labels = value

File /home/pandas/pandas/core/indexes/base.py:703, in Index._maybe_check_unique(self)
    700 duplicates = self._format_duplicate_message()
    701 msg += f"\n{duplicates}"
--> 703 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [0, 1]

警告

这是一个实验性功能。目前,许多方法未能传播 allows_duplicate_labels 值。在未来的版本中,预计每个接受或返回一个或多个 DataFrame 或 Series 对象的方法都将传播 allows_duplicate_labels