合并、连接、串联和比较#
pandas 提供了多种方法来组合和比较 Series
或 DataFrame
。
DataFrame.join()
:沿列合并多个DataFrame
对象DataFrame.combine_first()
:用相同位置的非缺失值更新缺失值merge_ordered()
:沿着一个有序轴合并两个Series
或DataFrame
对象merge_asof()
: 通过近似而非精确匹配键来合并两个Series
或DataFrame
对象Series.compare()
和DataFrame.compare()
: 显示两个Series
或DataFrame
对象之间的值差异
concat()
#
The concat()
function concatenates an arbitrary amount of
Series
or DataFrame
objects along an axis while
performing optional set logic (union or intersection) of the indexes on
the other axes. Like numpy.concatenate
, concat()
takes a list or dict of homogeneously-typed objects and concatenates them.
In [1]: df1 = pd.DataFrame(
...: {
...: "A": ["A0", "A1", "A2", "A3"],
...: "B": ["B0", "B1", "B2", "B3"],
...: "C": ["C0", "C1", "C2", "C3"],
...: "D": ["D0", "D1", "D2", "D3"],
...: },
...: index=[0, 1, 2, 3],
...: )
...:
In [2]: df2 = pd.DataFrame(
...: {
...: "A": ["A4", "A5", "A6", "A7"],
...: "B": ["B4", "B5", "B6", "B7"],
...: "C": ["C4", "C5", "C6", "C7"],
...: "D": ["D4", "D5", "D6", "D7"],
...: },
...: index=[4, 5, 6, 7],
...: )
...:
In [3]: df3 = pd.DataFrame(
...: {
...: "A": ["A8", "A9", "A10", "A11"],
...: "B": ["B8", "B9", "B10", "B11"],
...: "C": ["C8", "C9", "C10", "C11"],
...: "D": ["D8", "D9", "D10", "D11"],
...: },
...: index=[8, 9, 10, 11],
...: )
...:
In [4]: frames = [df1, df2, df3]
In [5]: result = pd.concat(frames)
In [6]: result
Out[6]:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
备注
concat()
会完整复制数据,并且迭代地重用 concat()
可能会创建不必要的副本。在使用 concat()
之前,请将所有 DataFrame
或 Series
对象收集到一个列表中。
frames = [process_your_file(f) for f in files]
result = pd.concat(frames)
备注
当连接带有命名轴的 DataFrame
时,pandas 将尽可能地保留这些索引/列名称。如果所有输入共享一个公共名称,则该名称将被分配给结果。当输入名称不完全一致时,结果将没有名称。对于 MultiIndex
也是如此,但逻辑是按层级分别应用的。
结果轴的连接逻辑#
join
关键字指定如何处理在第一个 DataFrame
中不存在的轴值。
join='outer'
取所有轴值的并集
In [7]: df4 = pd.DataFrame(
...: {
...: "B": ["B2", "B3", "B6", "B7"],
...: "D": ["D2", "D3", "D6", "D7"],
...: "F": ["F2", "F3", "F6", "F7"],
...: },
...: index=[2, 3, 6, 7],
...: )
...:
In [8]: result = pd.concat([df1, df4], axis=1)
In [9]: result
Out[9]:
A B C D B D F
0 A0 B0 C0 D0 NaN NaN NaN
1 A1 B1 C1 D1 NaN NaN NaN
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
6 NaN NaN NaN NaN B6 D6 F6
7 NaN NaN NaN NaN B7 D7 F7
join='inner'
取轴值的交集
In [10]: result = pd.concat([df1, df4], axis=1, join="inner")
In [11]: result
Out[11]:
A B C D B D F
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
要使用原始 DataFrame
中的 精确索引 执行有效的“左”连接,可以重新索引结果。
In [12]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)
In [13]: result
Out[13]:
A B C D B D F
0 A0 B0 C0 D0 NaN NaN NaN
1 A1 B1 C1 D1 NaN NaN NaN
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
在连接轴上忽略索引#
对于没有有意义索引的 DataFrame
对象,ignore_index
忽略重叠的索引。
In [14]: result = pd.concat([df1, df4], ignore_index=True, sort=False)
In [15]: result
Out[15]:
A B C D F
0 A0 B0 C0 D0 NaN
1 A1 B1 C1 D1 NaN
2 A2 B2 C2 D2 NaN
3 A3 B3 C3 D3 NaN
4 NaN B2 NaN D2 F2
5 NaN B3 NaN D3 F3
6 NaN B6 NaN D6 F6
7 NaN B7 NaN D7 F7
连接 Series
和 DataFrame
#
你可以连接 Series
和 DataFrame
对象的混合。Series
将被转换为 DataFrame
,列名为 Series
的名称。
In [16]: s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")
In [17]: result = pd.concat([df1, s1], axis=1)
In [18]: result
Out[18]:
A B C D X
0 A0 B0 C0 D0 X0
1 A1 B1 C1 D1 X1
2 A2 B2 C2 D2 X2
3 A3 B3 C3 D3 X3
未命名的 系列
将被连续编号。
In [19]: s2 = pd.Series(["_0", "_1", "_2", "_3"])
In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)
In [21]: result
Out[21]:
A B C D 0 1 2
0 A0 B0 C0 D0 _0 _0 _0
1 A1 B1 C1 D1 _1 _1 _1
2 A2 B2 C2 D2 _2 _2 _2
3 A3 B3 C3 D3 _3 _3 _3
ignore_index=True
将删除所有名称引用。
In [22]: result = pd.concat([df1, s1], axis=1, ignore_index=True)
In [23]: result
Out[23]:
0 1 2 3 4
0 A0 B0 C0 D0 X0
1 A1 B1 C1 D1 X1
2 A2 B2 C2 D2 X2
3 A3 B3 C3 D3 X3
生成的 keys
#
keys
参数为生成的索引或列添加另一个轴级别(创建一个 MultiIndex
),将特定键与每个原始 DataFrame
关联。
In [24]: result = pd.concat(frames, keys=["x", "y", "z"])
In [25]: result
Out[25]:
A B C D
x 0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
In [26]: result.loc["y"]
Out[26]:
A B C D
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
keys
参数可以在基于现有的 Series
创建新的 DataFrame
时覆盖列名。
In [27]: s3 = pd.Series([0, 1, 2, 3], name="foo")
In [28]: s4 = pd.Series([0, 1, 2, 3])
In [29]: s5 = pd.Series([0, 1, 4, 5])
In [30]: pd.concat([s3, s4, s5], axis=1)
Out[30]:
foo 0 1
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5
In [31]: pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
Out[31]:
red blue yellow
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5
你也可以传递一个字典给 concat()
,在这种情况下,除非指定了其他的 keys
参数,否则字典的键将被用于 keys
参数:
In [32]: pieces = {"x": df1, "y": df2, "z": df3}
In [33]: result = pd.concat(pieces)
In [34]: result
Out[34]:
A B C D
x 0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
In [35]: result = pd.concat(pieces, keys=["z", "y"])
In [36]: result
Out[36]:
A B C D
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
MultiIndex
创建的级别由传递的键和 DataFrame
片段的索引构成:
In [37]: result.index.levels
Out[37]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])
levels
参数允许指定与 keys
相关的最终级别
In [38]: result = pd.concat(
....: pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
....: )
....:
In [39]: result
Out[39]:
A B C D
group_key
x 0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
y 4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
z 8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
In [40]: result.index.levels
Out[40]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
向 DataFrame
追加行#
如果你有一个 Series
,你想将其作为单行追加到一个 DataFrame
,你可以将该行转换为一个 DataFrame
并使用 concat()
In [41]: s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])
In [42]: result = pd.concat([df1, s2.to_frame().T], ignore_index=True)
In [43]: result
Out[43]:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 X0 X1 X2 X3
merge()
#
merge()
执行类似于 SQL 等关系数据库的连接操作。熟悉 SQL 但不熟悉 pandas 的用户可以参考 与 SQL 的比较。
合并类型#
merge()
实现了常见的 SQL 风格连接操作。
一对一:将两个
DataFrame
对象基于它们的索引进行连接,这些索引必须包含唯一值。many-to-one:将唯一索引连接到不同
DataFrame
中的一个或多个列。多对多 : 列与列之间的连接。
备注
当在列上连接列时,可能是多对多连接,传递的 DataFrame
对象上的任何索引 将被丢弃。
对于一个 多对多 连接,如果一个键组合在两个表中出现多次,DataFrame
将具有相关数据的 笛卡尔积。
In [44]: left = pd.DataFrame(
....: {
....: "key": ["K0", "K1", "K2", "K3"],
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: }
....: )
....:
In [45]: right = pd.DataFrame(
....: {
....: "key": ["K0", "K1", "K2", "K3"],
....: "C": ["C0", "C1", "C2", "C3"],
....: "D": ["D0", "D1", "D2", "D3"],
....: }
....: )
....:
In [46]: result = pd.merge(left, right, on="key")
In [47]: result
Out[47]:
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A2 B2 C2 D2
3 K3 A3 B3 C3 D3
how
参数用于 merge()
指定哪些键包含在结果表中。如果一个键组合在左表或右表中**没有出现**,则连接表中的值将为 NA
。以下是 how
选项及其等效的 SQL 名称的总结:
合并方法 |
SQL 连接名称 |
描述 |
---|---|---|
|
|
仅使用左侧框架中的键 |
|
|
仅使用右侧框架中的键 |
|
|
使用两个帧的键的并集 |
|
|
使用两个帧中键的交集 |
|
|
创建两个数据框的行的笛卡尔积 |
In [48]: left = pd.DataFrame(
....: {
....: "key1": ["K0", "K0", "K1", "K2"],
....: "key2": ["K0", "K1", "K0", "K1"],
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: }
....: )
....:
In [49]: right = pd.DataFrame(
....: {
....: "key1": ["K0", "K1", "K1", "K2"],
....: "key2": ["K0", "K0", "K0", "K0"],
....: "C": ["C0", "C1", "C2", "C3"],
....: "D": ["D0", "D1", "D2", "D3"],
....: }
....: )
....:
In [50]: result = pd.merge(left, right, how="left", on=["key1", "key2"])
In [51]: result
Out[51]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN
In [52]: result = pd.merge(left, right, how="right", on=["key1", "key2"])
In [53]: result
Out[53]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
3 K2 K0 NaN NaN C3 D3
In [54]: result = pd.merge(left, right, how="outer", on=["key1", "key2"])
In [55]: result
Out[55]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K0 NaN NaN C3 D3
5 K2 K1 A3 B3 NaN NaN
In [56]: result = pd.merge(left, right, how="inner", on=["key1", "key2"])
In [57]: result
Out[57]:
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
In [58]: result = pd.merge(left, right, how="cross")
In [59]: result
Out[59]:
key1_x key2_x A B key1_y key2_y C D
0 K0 K0 A0 B0 K0 K0 C0 D0
1 K0 K0 A0 B0 K1 K0 C1 D1
2 K0 K0 A0 B0 K1 K0 C2 D2
3 K0 K0 A0 B0 K2 K0 C3 D3
4 K0 K1 A1 B1 K0 K0 C0 D0
.. ... ... .. .. ... ... .. ..
11 K1 K0 A2 B2 K2 K0 C3 D3
12 K2 K1 A3 B3 K0 K0 C0 D0
13 K2 K1 A3 B3 K1 K0 C1 D1
14 K2 K1 A3 B3 K1 K0 C2 D2
15 K2 K1 A3 B3 K2 K0 C3 D3
[16 rows x 8 columns]
如果 MultiIndex
的名称对应于 DataFrame
的列,则可以使用 MultiIndex
合并 Series
和 DataFrame
。在合并之前,使用 Series.reset_index()
将 Series
转换为 DataFrame
。
In [60]: df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})
In [61]: df
Out[61]:
Let Num
0 A 1
1 B 2
2 C 3
In [62]: ser = pd.Series(
....: ["a", "b", "c", "d", "e", "f"],
....: index=pd.MultiIndex.from_arrays(
....: [["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
....: ),
....: )
....:
In [63]: ser
Out[63]:
Let Num
A 1 a
B 2 b
C 3 c
A 4 d
B 5 e
C 6 f
dtype: object
In [64]: pd.merge(df, ser.reset_index(), on=["Let", "Num"])
Out[64]:
Let Num 0
0 A 1 a
1 B 2 b
2 C 3 c
在 DataFrame
中使用重复的连接键执行外连接
In [65]: left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})
In [66]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
In [67]: result = pd.merge(left, right, on="B", how="outer")
In [68]: result
Out[68]:
A_x B A_y
0 1 2 4
1 1 2 5
2 1 2 6
3 2 2 4
4 2 2 5
5 2 2 6
警告
在重复键上合并会显著增加结果的维度,并可能导致内存溢出。
合并键唯一性#
validate
参数检查合并键的唯一性。在合并操作之前检查键的唯一性,可以防止内存溢出和意外的键重复。
In [69]: left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})
In [70]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
In [71]: result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
---------------------------------------------------------------------------
MergeError Traceback (most recent call last)
Cell In[71], line 1
----> 1 result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
File /home/pandas/pandas/core/reshape/merge.py:368, in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
354 return _cross_merge(
355 left_df,
356 right_df,
(...)
365 validate=validate,
366 )
367 else:
--> 368 op = _MergeOperation(
369 left_df,
370 right_df,
371 how=how,
372 on=on,
373 left_on=left_on,
374 right_on=right_on,
375 left_index=left_index,
376 right_index=right_index,
377 sort=sort,
378 suffixes=suffixes,
379 indicator=indicator,
380 validate=validate,
381 )
382 return op.get_result()
File /home/pandas/pandas/core/reshape/merge.py:1020, in _MergeOperation.__init__(self, left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, indicator, validate)
1016 # If argument passed to validate,
1017 # check if columns specified as unique
1018 # are in fact unique.
1019 if validate is not None:
-> 1020 self._validate_validate_kwd(validate)
File /home/pandas/pandas/core/reshape/merge.py:1859, in _MergeOperation._validate_validate_kwd(self, validate)
1855 raise MergeError(
1856 "Merge keys are not unique in left dataset; not a one-to-one merge"
1857 )
1858 if not right_unique:
-> 1859 raise MergeError(
1860 "Merge keys are not unique in right dataset; not a one-to-one merge"
1861 )
1863 elif validate in ["one_to_many", "1:m"]:
1864 if not left_unique:
MergeError: Merge keys are not unique in right dataset; not a one-to-one merge
如果用户知道右侧 DataFrame
中有重复项,但希望确保左侧 DataFrame
中没有重复项,可以使用 validate='one_to_many'
参数,这样不会引发异常。
In [72]: pd.merge(left, right, on="B", how="outer", validate="one_to_many")
Out[72]:
A_x B A_y
0 1 1 NaN
1 2 2 4.0
2 2 2 5.0
3 2 2 6.0
合并结果指示器#
merge()
接受参数 indicator
。如果为 True
,将在输出对象中添加一个名为 _merge
的分类类型列,该列的取值为:
观察原点
_merge
值仅在
'left'
帧中合并键
left_only
仅在
'right'
帧中合并键
right_only
两个帧中的合并键
both
In [73]: df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})
In [74]: df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})
In [75]: pd.merge(df1, df2, on="col1", how="outer", indicator=True)
Out[75]:
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
indicator
的字符串参数将使用该值作为指示器列的名称。
In [76]: pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")
Out[76]:
col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
重叠的值列#
合并 suffixes
参数接受一个字符串列表的元组,附加到输入 DataFrame
中重叠的列名以消除结果列的歧义:
In [77]: left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})
In [78]: right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})
In [79]: result = pd.merge(left, right, on="k")
In [80]: result
Out[80]:
k v_x v_y
0 K0 1 4
1 K0 1 5
In [81]: result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))
In [82]: result
Out[82]:
k v_l v_r
0 K0 1 4
1 K0 1 5
DataFrame.join()
#
DataFrame.join()
将多个可能具有不同索引的 DataFrame
的列组合成一个单一的结果 DataFrame
。
In [83]: left = pd.DataFrame(
....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
....: )
....:
In [84]: right = pd.DataFrame(
....: {"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
....: )
....:
In [85]: result = left.join(right)
In [86]: result
Out[86]:
A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2
In [87]: result = left.join(right, how="outer")
In [88]: result
Out[88]:
A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2
K3 NaN NaN C3 D3
In [89]: result = left.join(right, how="inner")
In [90]: result
Out[90]:
A B C D
K0 A0 B0 C0 D0
K2 A2 B2 C2 D2
DataFrame.join()
接受一个可选的 on
参数,该参数可以是列或多列名称,用于指定传递的 DataFrame
要对齐的列。
In [91]: left = pd.DataFrame(
....: {
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: "key": ["K0", "K1", "K0", "K1"],
....: }
....: )
....:
In [92]: right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])
In [93]: result = left.join(right, on="key")
In [94]: result
Out[94]:
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K0 C0 D0
3 A3 B3 K1 C1 D1
In [95]: result = pd.merge(
....: left, right, left_on="key", right_index=True, how="left", sort=False
....: )
....:
In [96]: result
Out[96]:
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K0 C0 D0
3 A3 B3 K1 C1 D1
要基于多个键进行连接,传递的 DataFrame
必须具有 MultiIndex
:
In [97]: left = pd.DataFrame(
....: {
....: "A": ["A0", "A1", "A2", "A3"],
....: "B": ["B0", "B1", "B2", "B3"],
....: "key1": ["K0", "K0", "K1", "K2"],
....: "key2": ["K0", "K1", "K0", "K1"],
....: }
....: )
....:
In [98]: index = pd.MultiIndex.from_tuples(
....: [("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
....: )
....:
In [99]: right = pd.DataFrame(
....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
....: )
....:
In [100]: result = left.join(right, on=["key1", "key2"])
In [101]: result
Out[101]:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A1 B1 K0 K1 NaN NaN
2 A2 B2 K1 K0 C1 D1
3 A3 B3 K2 K1 C3 D3
DataFrame.join
的默认操作是执行左连接,该连接仅使用调用 DataFrame
中找到的键。其他连接类型可以通过 how
指定。
In [102]: result = left.join(right, on=["key1", "key2"], how="inner")
In [103]: result
Out[103]:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
2 A2 B2 K1 K0 C1 D1
3 A3 B3 K2 K1 C3 D3
将单个索引与多索引合并#
你可以将一个带有 Index
的 DataFrame
与一个带有 MultiIndex
的 DataFrame
在某个级别上进行合并。Index
的 name
将与 MultiIndex
的级别名称匹配。
In [104]: left = pd.DataFrame(
.....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
.....: index=pd.Index(["K0", "K1", "K2"], name="key"),
.....: )
.....:
In [105]: index = pd.MultiIndex.from_tuples(
.....: [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
.....: names=["key", "Y"],
.....: )
.....:
In [106]: right = pd.DataFrame(
.....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
.....: index=index,
.....: )
.....:
In [107]: result = left.join(right, how="inner")
In [108]: result
Out[108]:
A B C D
key Y
K0 Y0 A0 B0 C0 D0
K1 Y1 A1 B1 C1 D1
K2 Y2 A2 B2 C2 D2
Y3 A2 B2 C3 D3
与两个 MultiIndex
连接#
MultiIndex
的输入参数必须在连接中完全使用,并且是左侧参数索引的子集。
In [109]: leftindex = pd.MultiIndex.from_product(
.....: [list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
.....: )
.....:
In [110]: left = pd.DataFrame({"v1": range(12)}, index=leftindex)
In [111]: left
Out[111]:
v1
abc xy num
a x 1 0
2 1
y 1 2
2 3
b x 1 4
2 5
y 1 6
2 7
c x 1 8
2 9
y 1 10
2 11
In [112]: rightindex = pd.MultiIndex.from_product(
.....: [list("abc"), list("xy")], names=["abc", "xy"]
.....: )
.....:
In [113]: right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)
In [114]: right
Out[114]:
v2
abc xy
a x 100
y 200
b x 300
y 400
c x 500
y 600
In [115]: left.join(right, on=["abc", "xy"], how="inner")
Out[115]:
v1 v2
abc xy num
a x 1 0 100
2 1 100
y 1 2 200
2 3 200
b x 1 4 300
2 5 300
y 1 6 400
2 7 400
c x 1 8 500
2 9 500
y 1 10 600
2 11 600
In [116]: leftindex = pd.MultiIndex.from_tuples(
.....: [("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
.....: )
.....:
In [117]: left = pd.DataFrame(
.....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
.....: )
.....:
In [118]: rightindex = pd.MultiIndex.from_tuples(
.....: [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
.....: )
.....:
In [119]: right = pd.DataFrame(
.....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
.....: )
.....:
In [120]: result = pd.merge(
.....: left.reset_index(), right.reset_index(), on=["key"], how="inner"
.....: ).set_index(["key", "X", "Y"])
.....:
In [121]: result
Out[121]:
A B C D
key X Y
K0 X0 Y0 A0 B0 C0 D0
X1 Y0 A1 B1 C0 D0
K1 X2 Y1 A2 B2 C1 D1
在列和索引级别的组合上进行合并#
作为 on
、left_on
和 right_on
参数传递的字符串可以引用列名或索引级别名。这使得可以在不重置索引的情况下,基于索引级别和列的组合来合并 DataFrame
实例。
In [122]: left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")
In [123]: left = pd.DataFrame(
.....: {
.....: "A": ["A0", "A1", "A2", "A3"],
.....: "B": ["B0", "B1", "B2", "B3"],
.....: "key2": ["K0", "K1", "K0", "K1"],
.....: },
.....: index=left_index,
.....: )
.....:
In [124]: right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")
In [125]: right = pd.DataFrame(
.....: {
.....: "C": ["C0", "C1", "C2", "C3"],
.....: "D": ["D0", "D1", "D2", "D3"],
.....: "key2": ["K0", "K0", "K0", "K1"],
.....: },
.....: index=right_index,
.....: )
.....:
In [126]: result = left.merge(right, on=["key1", "key2"])
In [127]: result
Out[127]:
A B key2 C D
key1
K0 A0 B0 K0 C0 D0
K1 A2 B2 K0 C1 D1
K2 A3 B3 K1 C3 D3
备注
当使用 MultiIndex
的某些级别进行 DataFrame
连接时,结果连接中将删除多余的级别。要保留这些级别,请在连接之前对这些级别名称使用 DataFrame.reset_index()
将这些级别移动到列中。
合并多个 DataFrame
#
一个 :class:`DataFrame`
的列表或元组也可以传递给 join()
以根据它们的索引将它们连接在一起。
In [128]: right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])
In [129]: result = left.join([right, right2])
DataFrame.combine_first()
#
DataFrame.combine_first()
使用另一个 DataFrame
中相应位置的非缺失值更新一个 DataFrame
中的缺失值。
In [130]: df1 = pd.DataFrame(
.....: [[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
.....: )
.....:
In [131]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])
In [132]: result = df1.combine_first(df2)
In [133]: result
Out[133]:
0 1 2
0 NaN 3.0 5.0
1 -4.6 NaN -8.2
2 -5.0 7.0 4.0
merge_ordered()
#
merge_ordered()
合并顺序数据,例如数值或时间序列数据,并可以选择使用 fill_method
填充缺失数据。
In [134]: left = pd.DataFrame(
.....: {"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
.....: )
.....:
In [135]: right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})
In [136]: pd.merge_ordered(left, right, fill_method="ffill", left_by="s")
Out[136]:
k lv s rv
0 K0 1.0 a NaN
1 K1 1.0 a 1.0
2 K2 1.0 a 2.0
3 K4 1.0 a 3.0
4 K1 2.0 b 1.0
5 K2 2.0 b 2.0
6 K4 2.0 b 3.0
7 K1 3.0 c 1.0
8 K2 3.0 c 2.0
9 K4 3.0 c 3.0
10 K1 NaN d 1.0
11 K2 4.0 d 2.0
12 K4 4.0 d 3.0
merge_asof()
#
merge_asof()
类似于有序的左连接,除了匹配是在最近的键而不是相等的键上。对于 left
DataFrame
中的每一行,选择 right
DataFrame
中 on
键小于左边键的最后一行。两个 DataFrame
必须按键排序。
可选地,merge_asof()
可以通过匹配 by
键以及 on
键上的最近匹配来执行分组合并。
In [137]: trades = pd.DataFrame(
.....: {
.....: "time": pd.to_datetime(
.....: [
.....: "20160525 13:30:00.023",
.....: "20160525 13:30:00.038",
.....: "20160525 13:30:00.048",
.....: "20160525 13:30:00.048",
.....: "20160525 13:30:00.048",
.....: ]
.....: ),
.....: "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
.....: "price": [51.95, 51.95, 720.77, 720.92, 98.00],
.....: "quantity": [75, 155, 100, 100, 100],
.....: },
.....: columns=["time", "ticker", "price", "quantity"],
.....: )
.....:
In [138]: quotes = pd.DataFrame(
.....: {
.....: "time": pd.to_datetime(
.....: [
.....: "20160525 13:30:00.023",
.....: "20160525 13:30:00.023",
.....: "20160525 13:30:00.030",
.....: "20160525 13:30:00.041",
.....: "20160525 13:30:00.048",
.....: "20160525 13:30:00.049",
.....: "20160525 13:30:00.072",
.....: "20160525 13:30:00.075",
.....: ]
.....: ),
.....: "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
.....: "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
.....: "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
.....: },
.....: columns=["time", "ticker", "bid", "ask"],
.....: )
.....:
In [139]: trades
Out[139]:
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100
In [140]: quotes
Out[140]:
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
In [141]: pd.merge_asof(trades, quotes, on="time", by="ticker")
Out[141]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
merge_asof()
在报价时间和交易时间之间 2ms
内。
In [142]: pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms"))
Out[142]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
merge_asof()
在报价时间和交易时间之间 10ms
内,并排除时间上的完全匹配。请注意,尽管我们排除了完全匹配(的报价),之前的报价确实会传播到那个时间点。
In [143]: pd.merge_asof(
.....: trades,
.....: quotes,
.....: on="time",
.....: by="ticker",
.....: tolerance=pd.Timedelta("10ms"),
.....: allow_exact_matches=False,
.....: )
.....:
Out[143]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN
3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
compare()
#
The Series.compare()
and DataFrame.compare()
methods allow you to
compare two DataFrame
or Series
, respectively, and summarize their differences.
In [144]: df = pd.DataFrame(
.....: {
.....: "col1": ["a", "a", "b", "b", "a"],
.....: "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
.....: "col3": [1.0, 2.0, 3.0, 4.0, 5.0],
.....: },
.....: columns=["col1", "col2", "col3"],
.....: )
.....:
In [145]: df
Out[145]:
col1 col2 col3
0 a 1.0 1.0
1 a 2.0 2.0
2 b 3.0 3.0
3 b NaN 4.0
4 a 5.0 5.0
In [146]: df2 = df.copy()
In [147]: df2.loc[0, "col1"] = "c"
In [148]: df2.loc[2, "col3"] = 4.0
In [149]: df2
Out[149]:
col1 col2 col3
0 c 1.0 1.0
1 a 2.0 2.0
2 b 3.0 4.0
3 b NaN 4.0
4 a 5.0 5.0
In [150]: df.compare(df2)
Out[150]:
col1 col3
self other self other
0 a c NaN NaN
2 NaN NaN 3.0 4.0
默认情况下,如果两个对应的值相等,它们将显示为 NaN
。此外,如果整行/整列中的所有值都相等,则该行/列将从结果中省略。剩余的差异将按列对齐。
将差异堆叠在行上。
In [151]: df.compare(df2, align_axis=0)
Out[151]:
col1 col3
0 self a NaN
other c NaN
2 self NaN 3.0
other NaN 4.0
保持所有原始行和列与 keep_shape=True
In [152]: df.compare(df2, keep_shape=True)
Out[152]:
col1 col2 col3
self other self other self other
0 a c NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN 3.0 4.0
3 NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN
保持所有原始值,即使它们是相等的。
In [153]: df.compare(df2, keep_shape=True, keep_equal=True)
Out[153]:
col1 col2 col3
self other self other self other
0 a c 1.0 1.0 1.0 1.0
1 a a 2.0 2.0 2.0 2.0
2 b b 3.0 3.0 3.0 4.0
3 b b NaN NaN 4.0 4.0
4 a a 5.0 5.0 5.0 5.0