ClearML 服务命令行界面
clearml-serving
实用程序是一个用于模型部署和编排的 CLI 工具。
以下页面提供了clearml-serving
的CLI命令的参考:
- list - 列出正在运行的Serving服务
- create - 创建一个新的服务
- metrics - 配置推理指标服务
- config - 配置一个新的服务
- model - 为运行中的服务配置模型端点
全局参数
clearml-serving [-h] [--debug] [--yes] [--id ID] {list,create,metrics,config,model}
Name | Description | Optional |
---|---|---|
--id | Serving Service (Control plane) Task ID to configure (if not provided, automatically detect the running control plane Task) | |
--debug | Print debug messages | |
--yes | Always answer YES on interactive inputs |
Service ID
执行metrics
、config
和model
命令需要Serving Service的ID(--id
)。
列表
列出正在运行的服务服务。
clearml-serving list [-h]
创建
创建一个新的服务服务。
clearml-serving create [-h] [--name NAME] [--tags TAGS [TAGS ...]] [--project PROJECT]
参数
Name | Description | Optional |
---|---|---|
--name | Serving service's name. Default: Serving-Service | |
--project | Serving service's project. Default: DevOps | |
--tags | Serving service's user tags. The serving service can be labeled, which can be useful for organizing |
指标
配置推理指标服务。
clearml-serving metrics [-h] {add,remove,list}
添加
为特定端点添加/修改指标。
clearml-serving metrics add [-h] --endpoint ENDPOINT [--log-freq LOG_FREQ]
[--variable-scalar VARIABLE_SCALAR [VARIABLE_SCALAR ...]]
[--variable-enum VARIABLE_ENUM [VARIABLE_ENUM ...]]
[--variable-value VARIABLE_VALUE [VARIABLE_VALUE ...]]
参数
Name | Description | Optional |
---|---|---|
--endpoint | Metric endpoint name including version (e.g. "model/1" or a prefix "model/*" ). Notice: it will override any previous endpoint logged metrics | |
--log-freq | Logging request frequency, between 0.0 to 1.0. Example: 1.0 means all requests are logged, 0.5 means half of the requests are logged if not specified. To use global logging frequency, see config --metric-log-freq | |
--variable-scalar | Add float (scalar) argument to the metric logger, <name>=<histogram> . Example: with specific buckets: "x1=0,0.2,0.4,0.6,0.8,1" or with min/max/num_buckets "x1=0.0/1.0/5" . Notice: In cases where 1000s of requests per second reach the serving, it makes no sense to display every datapoint. So scalars can be divided in buckets, and for each minute for example. Then it's possible to calculate what % of the total traffic fell in bucket 1, bucket 2, bucket 3 etc. The Y axis represents the buckets, color is the value in % of traffic in that bucket, and X is time. | |
--variable-enum | Add enum (string) argument to the metric logger, <name>=<optional_values> . Example: "detect=cat,dog,sheep" | |
--variable-value | Add non-samples scalar argument to the metric logger, <name> . Example: "latency" |
删除
从特定端点移除指标。
clearml-serving metrics remove [-h] [--endpoint ENDPOINT]
[--variable VARIABLE [VARIABLE ...]]
参数
Name | Description | Optional |
---|---|---|
--endpoint | Metric endpoint name including version (e.g. "model/1" or a prefix "model/*" ) | |
--variable | Remove (scalar/enum) argument from the metric logger, <name> example: "x1" |
列表
列出所有端点上记录的指标。
clearml-serving metrics list [-h]
配置
配置一个新的服务服务。
clearml-serving config [-h] [--base-serving-url BASE_SERVING_URL]
[--triton-grpc-server TRITON_GRPC_SERVER]
[--kafka-metric-server KAFKA_METRIC_SERVER]
[--metric-log-freq METRIC_LOG_FREQ]
参数
Name | Description | Optional |
---|---|---|
--base-serving-url | External base serving service url. Example: http://127.0.0.1:8080/serve | |
--triton-grpc-server | External ClearML-Triton serving container gRPC address. Example: 127.0.0.1:9001 | |
--kafka-metric-server | External Kafka service url. Example: 127.0.0.1:9092 | |
--metric-log-freq | Set default metric logging frequency between 0.0 to 1.0. 1.0 means that 100% of all requests are logged |
模型
为已经运行的服务配置模型端点。
clearml-serving model [-h] {list,remove,upload,canary,auto-update,add}
列表
列出当前模型。
clearml-serving model list [-h]
删除
通过其端点名称删除模型。
clearml-serving model remove [-h] [--endpoint ENDPOINT]
参数
Name | Description | Optional |
---|---|---|
--endpoint | Model endpoint name |
上传
上传并注册模型文件/文件夹。
clearml-serving model upload [-h] --name NAME [--tags TAGS [TAGS ...]] --project PROJECT
[--framework {tensorflow,tensorflowjs,tensorflowlite,pytorch,torchscript,caffe,caffe2,onnx,keras,mknet,cntk,torch,darknet,paddlepaddle,scikitlearn,xgboost,lightgbm,parquet,megengine,catboost,tensorrt,openvino,custom}]
[--publish] [--path PATH] [--url URL]
[--destination DESTINATION]
参数
Name | Description | Optional |
---|---|---|
--name | Specifying the model name to be registered in | |
--tags | Add tags to the newly created model | |
--project | Specify the project for the model to be registered in | |
--framework | Specify the model framework. Options are: 'tensorflow', 'tensorflowjs', 'tensorflowlite', 'pytorch', 'torchscript', 'caffe', 'caffe2', 'onnx', 'keras', 'mknet', 'cntk', 'torch', 'darknet', 'paddlepaddle', 'scikitlearn', 'xgboost', 'lightgbm', 'parquet', 'megengine', 'catboost', 'tensorrt', 'openvino', 'custom' | |
--publish | Publish the newly created model (change model state to "published" (i.e. locked and ready to deploy) | |
--path | Specify a model file/folder to be uploaded and registered | |
--url | Specify an already uploaded model url (e.g. s3://bucket/model.bin , gs://bucket/model.bin ) | |
--destination | Specify the target destination for the model to be uploaded. For example: s3://bucket/folder/ , s3://host_addr:port/bucket (for non-AWS S3-like services like MinIO), gs://bucket-name/folder , azure://<account name>.blob.core.windows.net/path/to/file |
金丝雀
添加模型Canary/A/B端点。
clearml-serving model canary [-h] [--endpoint ENDPOINT] [--weights WEIGHTS [WEIGHTS ...]]
[--input-endpoints INPUT_ENDPOINTS [INPUT_ENDPOINTS ...]]
[--input-endpoint-prefix INPUT_ENDPOINT_PREFIX]
参数
Name | Description | Optional |
---|---|---|
--endpoint | Model canary serving endpoint name (e.g. my_model/latest ) | |
--weights | Model canary weights (order matching model ep), (e.g. 0.2 0.8) | |
--input-endpoints | Model endpoint prefixes, can also include version (e.g. my_model , my_model/v1 ) | |
--input-endpoint-prefix | Model endpoint prefix, lexicographic order or by version <int> (e.g. my_model/1 , my_model/v1 ), where the first weight matches the last version. |
自动更新
添加/修改模型自动更新服务。
clearml-serving model auto-update [-h] [--endpoint ENDPOINT] --engine ENGINE
[--max-versions MAX_VERSIONS] [--name NAME]
[--tags TAGS [TAGS ...]] [--project PROJECT]
[--published] [--preprocess PREPROCESS]
[--input-size INPUT_SIZE [INPUT_SIZE ...]]
[--input-type INPUT_TYPE] [--input-name INPUT_NAME]
[--output-size OUTPUT_SIZE [OUTPUT_SIZE ...]]
[--output_type OUTPUT_TYPE] [--output-name OUTPUT_NAME]
[--aux-config AUX_CONFIG [AUX_CONFIG ...]]
参数
Name | Description | Optional |
---|---|---|
--endpoint | Base model endpoint (must be unique) | |
--engine | Model endpoint serving engine (triton, sklearn, xgboost, lightgbm) | |
--max-versions | Max versions to store (and create endpoints) for the model. Highest number is the latest version | |
--name | Specify model name to be selected and auto-updated (notice regexp selection use "$name^" for exact match) | |
--tags | Specify tags to be selected and auto-updated | |
--project | Specify model project to be selected and auto-updated | |
--published | Only select published model for auto-update | |
--preprocess | Specify Pre/Post processing code to be used with the model (point to local file / folder) - this should hold for all the models | |
--input-size | Specify the model matrix input size [Rows x Columns X Channels etc ...] | |
--input-type | Specify the model matrix input type. Examples: uint8, float32, int16, float16 etc. | |
--input-name | Specify the model layer pushing input into. Example: layer_0 | |
--output-size | Specify the model matrix output size [Rows x Columns X Channels etc ...] | |
--output_type | Specify the model matrix output type. Examples: uint8, float32, int16, float16 etc. | |
--output-name | Specify the model layer pulling results from. Examples: layer_99 | |
--aux-config | Specify additional engine specific auxiliary configuration in the form of key=value. Example: platform=onnxruntime_onnx response_cache.enable=true max_batch_size=8 . Notice: you can also pass a full configuration file (e.g. Triton "config.pbtxt") |
添加
添加/更新模型。
clearml-serving model add [-h] --engine ENGINE --endpoint ENDPOINT [--version VERSION]
[--model-id MODEL_ID] [--preprocess PREPROCESS]
[--input-size INPUT_SIZE [INPUT_SIZE ...]]
[--input-type INPUT_TYPE] [--input-name INPUT_NAME]
[--output-size OUTPUT_SIZE [OUTPUT_SIZE ...]]
[--output-type OUTPUT_TYPE] [--output-name OUTPUT_NAME]
[--aux-config AUX_CONFIG [AUX_CONFIG ...]] [--name NAME]
[--tags TAGS [TAGS ...]] [--project PROJECT] [--published]
参数
Name | Description | Optional |
---|---|---|
--engine | Model endpoint serving engine (triton, sklearn, xgboost, lightgbm) | |
--endpoint | Base model endpoint (must be unique) | |
--version | Model endpoint version (default: None) | |
--model-id | Specify a model ID to be served | |
--preprocess | Specify Pre/Post processing code to be used with the model (point to local file / folder) - this should hold for all the models | |
--input-size | Specify the model matrix input size [Rows x Columns X Channels etc ...] | |
--input-type | Specify the model matrix input type. Examples: uint8, float32, int16, float16 etc. | |
--input-name | Specify the model layer pushing input into. Example: layer_0 | |
--output-size | Specify the model matrix output size [Rows x Columns X Channels etc ...] | |
--output_type | Specify the model matrix output type. Examples: uint8, float32, int16, float16 etc. | |
--output-name | Specify the model layer pulling results from. Examples: layer_99 | |
--aux-config | Specify additional engine specific auxiliary configuration in the form of key=value. Example: platform=onnxruntime_onnx response_cache.enable=true max_batch_size=8 . Notice: you can also pass a full configuration file (e.g. Triton "config.pbtxt") | |
--name | Instead of specifying --model-id select based on model name | |
--tags | Specify tags to be selected and auto-updated | |
--project | Instead of specifying --model-id select based on model project | |
--published | Instead of specifying --model-id select based on model published |