GPT4All嵌入#

class langchain_community.embeddings.gpt4all.GPT4AllEmbeddings[source]#

基础类:BaseModel, Embeddings

GPT4All 嵌入模型。

要使用,您应该已经安装了gpt4all python包

示例

from langchain_community.embeddings import GPT4AllEmbeddings

model_name = "all-MiniLM-L6-v2.gguf2.f16.gguf"
gpt4all_kwargs = {'allow_download': 'True'}
embeddings = GPT4AllEmbeddings(
    model_name=model_name,
    gpt4all_kwargs=gpt4all_kwargs
)

通过解析和验证来自关键字参数的输入数据来创建一个新模型。

如果输入数据无法验证以形成有效模型,则引发 [ValidationError][pydantic_core.ValidationError]。

self 被显式地设为仅位置参数,以允许 self 作为字段名称。

param device: str | None = 'cpu'#
param gpt4all_kwargs: dict | None = {}#
param model_name: str | None = None#
param n_threads: int | None = None#
async aembed_documents(texts: list[str]) list[list[float]]#

异步嵌入搜索文档。

Parameters:

文本 (列表[字符串]) – 要嵌入的文本列表。

Returns:

嵌入列表。

Return type:

列表[列表[浮点数]]

async aembed_query(text: str) list[float]#

异步嵌入查询文本。

Parameters:

文本 (str) – 要嵌入的文本。

Returns:

嵌入。

Return type:

列表[浮点数]

embed_documents(texts: List[str]) List[List[float]][source]#

使用GPT4All嵌入文档列表。

Parameters:

文本 (列表[字符串]) – 要嵌入的文本列表。

Returns:

嵌入列表,每个文本对应一个。

Return type:

列表[列表[float]]

embed_query(text: str) List[float][source]#

使用GPT4All嵌入查询。

Parameters:

文本 (str) – 要嵌入的文本。

Returns:

文本的嵌入。

Return type:

列表[float]

使用 GPT4AllEmbeddings 的示例