河马#
- class langchain_community.vectorstores.hippo.Hippo(embedding_function: Embeddings, table_name: str = 'test', database_name: str = 'default', number_of_shards: int = 1, number_of_replicas: int = 1, connection_args: Dict[str, Any] | None = None, index_params: dict | None = None, drop_old: bool | None = False)[来源]#
Hippo 向量存储。
你需要安装 hippo-api 并运行 Hippo。
请访问我们的官方网站了解如何运行一个Hippo实例: https://www.transwarp.cn/starwarp
- Parameters:
embedding_function (Embeddings) – 用于嵌入文本的函数。
table_name (str) – 使用哪个Hippo表。默认为“test”。
database_name (str) – 使用哪个Hippo数据库。默认为“default”。
number_of_shards (int) – Hippo 表的分片数量。默认为 1。
number_of_replicas (int) – Hippo表的副本数量。默认为1。
connection_args (可选[dict[str, any]]) – 用于此类的连接参数以字典形式提供。
index_params (可选[字典]) – 使用哪些索引参数。默认为 IVF_FLAT。
drop_old (可选[bool]) – 是否删除当前集合。默认为False。
primary_field (str) – 主键字段的名称。默认为“pk”。
text_field (str) – 文本字段的名称。默认为“text”。
vector_field (str) – 向量字段的名称。默认为“vector”。
用于此类的连接参数以字典形式出现,以下是一些选项:
host (str): Hippo实例的主机。默认为“localhost”。 port (str/int): Hippo实例的端口。默认为7788。 user (str): 使用哪个用户连接到Hippo实例。如果用户和
如果提供了密码,我们将在每次RPC调用中添加相关的头部信息。
- password (str): Required when user is provided. The password
对应于用户。
示例
从langchain_community.vectorstores导入Hippo 从langchain_community.embeddings导入OpenAIEmbeddings
embedding = OpenAIEmbeddings() # 连接到本地主机上的hippo实例 vector_store = Hippo.from_documents(
文档, 嵌入=嵌入, 表名=”langchain_test”, 连接参数=HIPPO_CONNECTION
)
- Raises:
ValueError – 如果未安装hippo-api python包。
- Parameters:
embedding_function (Embeddings)
table_name (str)
database_name (str)
number_of_shards (int)
number_of_replicas (int)
connection_args (可选[字典[字符串, 任意类型]])
index_params (可选[字典])
drop_old (可选[布尔型])
属性
embeddings
如果可用,访问查询嵌入对象。
方法
__init__
(embedding_function[, table_name, ...])aadd_documents
(documents, **kwargs)异步运行更多文档通过嵌入并添加到向量存储中。
aadd_texts
(texts[, metadatas, ids])异步运行更多文本通过嵌入并添加到向量存储中。
add_documents
(documents, **kwargs)在向量存储中添加或更新文档。
add_texts
(texts[, metadatas, timeout, ...])将文本添加到集合中。
adelete
([ids])异步删除通过向量ID或其他条件。
afrom_documents
(documents, embedding, **kwargs)异步返回从文档和嵌入初始化的VectorStore。
afrom_texts
(texts, embedding[, metadatas, ids])异步返回从文本和嵌入初始化的VectorStore。
aget_by_ids
(ids, /)通过ID异步获取文档。
amax_marginal_relevance_search
(query[, k, ...])异步返回使用最大边际相关性选择的文档。
异步返回使用最大边际相关性选择的文档。
as_retriever
(**kwargs)返回从此VectorStore初始化的VectorStoreRetriever。
asearch
(query, search_type, **kwargs)异步返回与查询最相似的文档,使用指定的搜索类型。
asimilarity_search
(query[, k])异步返回与查询最相似的文档。
asimilarity_search_by_vector
(embedding[, k])异步返回与嵌入向量最相似的文档。
异步返回文档和相关度分数,范围在[0, 1]之间。
asimilarity_search_with_score
(*args, **kwargs)异步运行带距离的相似性搜索。
delete
([ids])通过向量ID或其他条件删除。
from_documents
(documents, embedding, **kwargs)返回从文档和嵌入初始化的VectorStore。
from_texts
(texts, embedding[, metadatas, ...])从给定的文本创建VST类的实例。
get_by_ids
(ids, /)通过ID获取文档。
max_marginal_relevance_search
(query[, k, ...])返回使用最大边际相关性选择的文档。
返回使用最大边际相关性选择的文档。
search
(query, search_type, **kwargs)使用指定的搜索类型返回与查询最相似的文档。
similarity_search
(query[, k, param, expr, ...])对查询字符串执行相似性搜索。
similarity_search_by_vector
(embedding[, k])返回与嵌入向量最相似的文档。
返回文档和相关度分数,分数范围在[0, 1]之间。
similarity_search_with_score
(query[, k, ...])对查询字符串执行搜索并返回带有分数的结果。
similarity_search_with_score_by_vector
(embedding)对查询字符串执行搜索并返回带有分数的结果。
- __init__(embedding_function: Embeddings, table_name: str = 'test', database_name: str = 'default', number_of_shards: int = 1, number_of_replicas: int = 1, connection_args: Dict[str, Any] | None = None, index_params: dict | None = None, drop_old: bool | None = False)[来源]#
- Parameters:
embedding_function (Embeddings)
table_name (str)
database_name (str)
number_of_shards (int)
number_of_replicas (int)
connection_args (Dict[str, Any] | None)
index_params (dict | None)
drop_old (bool | None)
- async aadd_documents(documents: list[Document], **kwargs: Any) list[str] #
通过嵌入异步运行更多文档并将其添加到向量存储中。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果ID的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str] #
异步运行更多文本通过嵌入并添加到向量存储中。
- Parameters:
texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的列表
**kwargs (Any) – 向量存储特定参数。
- Returns:
将文本添加到向量存储中后的ID列表。
- Raises:
ValueError – 如果元数据的数量与文本的数量不匹配。
ValueError – 如果id的数量与文本的数量不匹配。
- Return type:
列表[字符串]
- add_documents(documents: list[Document], **kwargs: Any) list[str] #
在向量存储中添加或更新文档。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果id的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, timeout: int | None = None, batch_size: int = 1000, **kwargs: Any) List[str] [source]#
向集合中添加文本。
- Parameters:
texts (Iterable[str]) – 一个包含要添加文本的可迭代对象。
metadatas (List[dict] | None) – 一个可选的字典列表,
文本。 (每个字典包含与之关联的元数据)
timeout (int | None) – 可选的超时时间,单位为秒。
batch_size (int) – 每批插入的文本数量,默认为1000。
**kwargs (Any) – 其他可选参数。
- Returns:
一个字符串列表,包含插入文本的唯一标识符。
- Return type:
列表[str]
注意
如果集合尚未创建,此方法将创建一个新集合。
- async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None #
通过向量ID或其他条件异步删除。
- Parameters:
ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- Returns:
如果删除成功则为真, 否则为假,如果未实现则为无。
- Return type:
可选[布尔]
- async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
异步返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST #
异步返回从文本和嵌入初始化的VectorStore。
- Parameters:
texts (list[str]) – 要添加到向量存储中的文本。
embedding (Embeddings) – 使用的嵌入函数。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的与文本关联的ID列表。
kwargs (Any) – 额外的关键字参数。
- Returns:
VectorStore 从文本和嵌入初始化。
- Return type:
- async aget_by_ids(ids: Sequence[str], /) list[Document] #
通过ID异步获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- async amax_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever #
返回从此VectorStore初始化的VectorStoreRetriever。
- Parameters:
**kwargs (Any) –
传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
- search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
- 可以包括以下内容:
k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值
用于similarity_score_threshold
- fetch_k: 传递给MMR算法的文档数量
(默认:20)
- lambda_mult: MMR返回结果的多样性;
1表示最小多样性,0表示最大多样性。(默认:0.5)
filter: 按文档元数据过滤
- Returns:
VectorStore的检索器类。
- Return type:
示例:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档,使用指定的搜索类型。
- Parameters:
query (str) – 输入文本。
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Return type:
列表[Document]
- async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document] #
异步返回与嵌入向量最相似的文档。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
异步返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
过滤检索到的文档集
- Returns:
(文档,相似度分数)的元组列表
- Return type:
列表[元组[Document, 浮点数]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]] #
异步运行带有距离的相似性搜索。
- Parameters:
*args (Any) – 传递给搜索方法的参数。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
- delete(ids: list[str] | None = None, **kwargs: Any) bool | None #
根据向量ID或其他条件删除。
- Parameters:
ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- Returns:
如果删除成功则为真, 否则为假,如果未实现则为无。
- Return type:
可选[布尔]
- classmethod from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, table_name: str = 'test', database_name: str = 'default', connection_args: Dict[str, Any] = {'host': 'localhost', 'password': 'admin', 'port': '7788', 'username': 'admin'}, index_params: Dict[Any, Any] | None = None, search_params: Dict[str, Any] | None = None, drop_old: bool = False, **kwargs: Any) Hippo [来源]#
从给定的文本创建VST类的实例。
- Parameters:
texts (List[str]) – 要添加的文本列表。
embedding (Embeddings) – 用于文本的嵌入模型。
metadatas (List[dict], 可选)
无。 (列表的每个文本的元数据字典。默认为)
table_name (str) – 表的名称。默认为“test”。
database_name (str) – 数据库的名称。默认为“default”。
connection_args (dict[str, Any]) – 连接参数。
DEFAULT_HIPPO_CONNECTION. (默认值为)
index_params (dict) – 索引参数。默认为 None。
search_params (dict) – 搜索参数。默认为空字典。
drop_old (bool) – 是否删除旧集合。默认为 False。
kwargs (Any) – 其他参数。
- Returns:
VST类的一个实例。
- Return type:
- get_by_ids(ids: Sequence[str], /) list[Document] #
通过ID获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- search(query: str, search_type: str, **kwargs: Any) list[Document] #
使用指定的搜索类型返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- similarity_search(query: str, k: int = 4, param: dict | None = None, expr: str | None = None, timeout: int | None = None, **kwargs: Any) List[Document] [source]#
对查询字符串执行相似性搜索。
- Parameters:
query (str) – 要搜索的文本。
k (int, optional) – 返回的结果数量。默认值为4。
param (dict, optional) – 指定索引的搜索参数。
无。 (默认值为)
expr (str, optional) – 过滤表达式。默认为 None。
timeout (int, optional) – 超时错误发生前的等待时间。
无。
kwargs (Any) – Collection.search() 的关键字参数。
- Returns:
搜索的文档结果。
- Return type:
列表[Document]
- similarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document] #
返回与嵌入向量最相似的文档。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
用于过滤检索到的文档集。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
- similarity_search_with_score(query: str, k: int = 4, param: dict | None = None, expr: str | None = None, timeout: int | None = None, **kwargs: Any) List[Tuple[Document, float]] [来源]#
对查询字符串执行搜索并返回带有分数的结果。
- Parameters:
query (str) – 被搜索的文本。
k (int, optional) – 返回的结果数量。
4. (默认是)
param (dict) – 指定索引的搜索参数。
无。 (默认值为)
expr (str, optional) – 过滤表达式。默认值为 None。
timeout (int, optional) – 超时错误前的等待时间。
无。
kwargs (Any) – Collection.search() 的关键字参数。
- Return type:
List[float], List[Tuple[Document, any, any]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: dict | None = None, expr: str | None = None, timeout: int | None = None, **kwargs: Any) List[Tuple[Document, float]] [source]#
对查询字符串执行搜索并返回带有分数的结果。
- Parameters:
embedding (List[float]) – 正在搜索的嵌入向量。
k (int, optional) – 返回的结果数量。
4. (默认是)
param (dict) – 指定索引的搜索参数。
无。 (默认值为)
expr (str, optional) – 过滤表达式。默认为 None。
timeout (int, optional) – 超时错误前的等待时间。
无。
kwargs (Any) – Collection.search() 的关键字参数。
- Returns:
生成的文档和分数。
- Return type:
列表[元组[Document, 浮点数]]
使用Hippo的示例