MongoDBAtlas向量搜索#
- class langchain_community.vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch(collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = 'default', text_key: str = 'text', embedding_key: str = 'embedding', relevance_score_fn: str = 'cosine')[source]#
自版本0.0.25起已弃用:请改用
:class:`~langchain_mongodb.MongoDBAtlasVectorSearch`
。在langchain-community==1.0之前不会移除。MongoDB Atlas Vector Search 向量存储。
要使用,你应该具备以下条件: - 已安装
pymongo
python 包 - 拥有与已部署的 MongoDB Atlas 集群关联的连接字符串Atlas 搜索索引
示例
from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_community.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch(collection, embeddings)
- Parameters:
collection (Collection[MongoDBDocumentType]) – 要添加文本的MongoDB集合。
embedding (Embeddings) – 使用的文本嵌入模型。
text_key (str) – MongoDB 字段,将包含每个文档的文本。
embedding_key (str) – MongoDB 字段,将包含每个文档的嵌入。
index_name (str) – Atlas Search 索引的名称。
relevance_score_fn (str) – 用于索引的相似度评分。
支持 (目前) – 欧几里得、余弦和点积。
属性
embeddings
如果可用,访问查询嵌入对象。
方法
__init__
(collection, embedding, *[, ...])aadd_documents
(documents, **kwargs)异步运行更多文档通过嵌入并添加到向量存储中。
aadd_texts
(texts[, metadatas, ids])异步运行更多文本通过嵌入并添加到向量存储中。
add_documents
(documents, **kwargs)在向量存储中添加或更新文档。
add_texts
(texts[, metadatas])通过嵌入运行更多文本并将其添加到向量存储中。
adelete
([ids])异步删除通过向量ID或其他条件。
afrom_documents
(documents, embedding, **kwargs)异步返回从文档和嵌入初始化的VectorStore。
afrom_texts
(texts, embedding[, metadatas, ids])异步返回从文本和嵌入初始化的VectorStore。
aget_by_ids
(ids, /)异步通过ID获取文档。
amax_marginal_relevance_search
(query[, k, ...])异步返回使用最大边际相关性选择的文档。
异步返回使用最大边际相关性选择的文档。
as_retriever
(**kwargs)返回从此 VectorStore 初始化的 VectorStoreRetriever。
asearch
(query, search_type, **kwargs)异步返回与查询最相似的文档,使用指定的搜索类型。
asimilarity_search
(query[, k])异步返回与查询最相似的文档。
asimilarity_search_by_vector
(embedding[, k])异步返回与嵌入向量最相似的文档。
异步返回文档和相关度分数,范围在[0, 1]之间。
asimilarity_search_with_score
(*args, **kwargs)异步运行带有距离的相似性搜索。
delete
([ids])根据向量ID或其他条件删除。
from_connection_string
(connection_string, ...)从MongoDB连接URI构建一个MongoDB Atlas Vector Search向量存储。
from_documents
(documents, embedding, **kwargs)返回从文档和嵌入初始化的VectorStore。
from_texts
(texts, embedding[, metadatas, ...])从原始文档构建一个MongoDB Atlas Vector Search向量存储。
get_by_ids
(ids, /)通过ID获取文档。
max_marginal_relevance_search
(query[, k, ...])返回使用最大边际相关性选择的文档。
返回使用最大边际相关性选择的文档。
search
(query, search_type, **kwargs)使用指定的搜索类型返回与查询最相似的文档。
similarity_search
(query[, k, pre_filter, ...])返回与给定查询最相似的MongoDB文档。
similarity_search_by_vector
(embedding[, k])返回与嵌入向量最相似的文档。
返回文档和相关度分数,范围在[0, 1]之间。
similarity_search_with_score
(query[, k, ...])返回与给定查询最相似的MongoDB文档及其分数。
- __init__(collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = 'default', text_key: str = 'text', embedding_key: str = 'embedding', relevance_score_fn: str = 'cosine')[source]#
- Parameters:
collection (Collection[MongoDBDocumentType]) – 要添加文本的MongoDB集合。
embedding (Embeddings) – 使用的文本嵌入模型。
text_key (str) – MongoDB 字段,将包含每个文档的文本。
embedding_key (str) – MongoDB 字段,将包含每个文档的嵌入。
index_name (str) – Atlas Search 索引的名称。
relevance_score_fn (str) – 用于索引的相似度评分。
支持 (目前) – 欧几里得、余弦和点积。
- async aadd_documents(documents: list[Document], **kwargs: Any) list[str] #
通过嵌入异步运行更多文档并将其添加到向量存储中。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果ID的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str] #
异步运行更多文本通过嵌入并添加到向量存储中。
- Parameters:
texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的列表
**kwargs (Any) – 向量存储特定参数。
- Returns:
将文本添加到向量存储中后的ID列表。
- Raises:
ValueError – 如果元数据的数量与文本的数量不匹配。
ValueError – 如果id的数量与文本的数量不匹配。
- Return type:
列表[字符串]
- add_documents(documents: list[Document], **kwargs: Any) list[str] #
在向量存储中添加或更新文档。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果id的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- add_texts(texts: Iterable[str], metadatas: List[Dict[str, Any]] | None = None, **kwargs: Any) List [source]#
通过嵌入运行更多文本并添加到向量存储中。
- Parameters:
texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。
metadatas (List[Dict[str, Any]] | None) – 可选的与文本关联的元数据列表。
kwargs (Any)
- Returns:
将文本添加到向量存储中后的ID列表。
- Return type:
列表
- async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None #
通过向量ID或其他条件异步删除。
- Parameters:
ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- Returns:
如果删除成功则为真, 否则为假,如果未实现则为无。
- Return type:
可选[布尔]
- async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
异步返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST #
异步返回从文本和嵌入初始化的VectorStore。
- Parameters:
texts (list[str]) – 要添加到向量存储中的文本。
embedding (Embeddings) – 使用的嵌入函数。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的与文本关联的ID列表。
kwargs (Any) – 额外的关键字参数。
- Returns:
VectorStore 从文本和嵌入初始化。
- Return type:
- async aget_by_ids(ids: Sequence[str], /) list[Document] #
通过ID异步获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- async amax_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever #
返回从此VectorStore初始化的VectorStoreRetriever。
- Parameters:
**kwargs (Any) –
传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
- search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
- 可以包括以下内容:
k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值
用于similarity_score_threshold
- fetch_k: 传递给MMR算法的文档数量
(默认:20)
- lambda_mult: MMR返回结果的多样性;
1表示最小多样性,0表示最大多样性。(默认:0.5)
filter: 按文档元数据过滤
- Returns:
VectorStore的检索器类。
- Return type:
示例:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档,使用指定的搜索类型。
- Parameters:
query (str) – 输入文本。
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Return type:
列表[Document]
- async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document] #
异步返回与嵌入向量最相似的文档。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
异步返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
过滤检索到的文档集
- Returns:
(文档,相似度分数)的元组列表
- Return type:
列表[元组[Document, 浮点数]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]] #
异步运行带有距离的相似性搜索。
- Parameters:
*args (Any) – 传递给搜索方法的参数。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
- delete(ids: list[str] | None = None, **kwargs: Any) bool | None #
根据向量ID或其他条件删除。
- Parameters:
ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- Returns:
如果删除成功则为真, 否则为假,如果未实现则为无。
- Return type:
可选[布尔]
- classmethod from_connection_string(connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any) MongoDBAtlasVectorSearch [source]#
从MongoDB连接URI构建一个MongoDB Atlas Vector Search向量存储。
- Parameters:
connection_string (str) – 一个有效的MongoDB连接URI。
namespace (str) – 一个有效的MongoDB命名空间(数据库和集合)。
embedding (Embeddings) – 用于向量存储的文本嵌入模型。
kwargs (Any)
- Returns:
一个新的MongoDBAtlasVectorSearch实例。
- Return type:
- classmethod from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[Dict] | None = None, collection: Collection[MongoDBDocumentType] | None = None, **kwargs: Any) MongoDBAtlasVectorSearch [source]#
从原始文档构建一个MongoDB Atlas Vector Search向量存储。
- This is a user-friendly interface that:
嵌入文档。
- 将文档添加到提供的MongoDB Atlas向量搜索索引中
(Lucene)
这是快速入门的一种方式。
示例
- Parameters:
文本 (列表[字符串])
embedding (Embeddings)
metadatas (可选[列表[字典]])
collection (可选[Collection[MongoDBDocumentType]])
kwargs (Any)
- Return type:
- get_by_ids(ids: Sequence[str], /) list[Document] #
通过ID获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, pre_filter: Dict | None = None, post_filter_pipeline: List[Dict] | None = None, **kwargs: Any) List[Document] [来源]#
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – (可选)要返回的文档数量。默认为4。
fetch_k (int) – (可选)在传递给MMR算法之前要获取的文档数量。默认为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
pre_filter (Dict | None) – (可选)用于在文档字段上进行预过滤的参数字典。
post_filter_pipeline (List[Dict] | None) – (可选)在vectorSearch阶段之后的MongoDB聚合阶段的管道。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[文档]
- max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document] #
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[Document]
- search(query: str, search_type: str, **kwargs: Any) list[Document] #
使用指定的搜索类型返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- similarity_search(query: str, k: int = 4, pre_filter: Dict | None = None, post_filter_pipeline: List[Dict] | None = None, **kwargs: Any) List[Document] [来源]#
返回与给定查询最相似的MongoDB文档。
使用MongoDB Atlas Search中可用的vectorSearch操作符。 更多信息:https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – (可选)返回的文档数量。默认为4。
pre_filter (Dict | None) – (可选)用于预过滤文档字段的参数字典。
post_filter_pipeline (List[Dict] | None) – (可选)在vectorSearch阶段之后的MongoDB聚合阶段管道。
kwargs (Any)
- Returns:
与查询最相似的文档列表及其分数。
- Return type:
列表[文档]
- similarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document] #
返回与嵌入向量最相似的文档。
- Parameters:
embedding (list[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
用于过滤检索到的文档集。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
- similarity_search_with_score(query: str, k: int = 4, pre_filter: Dict | None = None, post_filter_pipeline: List[Dict] | None = None) List[Tuple[Document, float]] [来源]#
返回与给定查询最相似的MongoDB文档及其分数。
使用MongoDB Atlas Search中可用的vectorSearch操作符。 更多信息:https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – (可选)返回的文档数量。默认为4。
pre_filter (Dict | None) – (可选)用于预过滤文档字段的参数字典。
post_filter_pipeline (List[Dict] | None) – (可选)在vectorSearch阶段之后的MongoDB聚合阶段管道。
- Returns:
与查询最相似的文档列表及其分数。
- Return type:
列表[元组[文档, 浮点数]]
使用MongoDBAtlasVectorSearch的示例