灯笼#

class langchain_community.vectorstores.lantern.Lantern(connection_string: str, embedding_function: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, collection_name: str = 'langchain', collection_metadata: dict | None = None, pre_delete_collection: bool = False, logger: Logger | None = None, relevance_score_fn: Callable[[float], float] | None = None)[来源]#

Postgreslantern 扩展作为向量存储。

lantern 默认使用顺序扫描。但你可以使用 create_hnsw_index 方法创建一个 HNSW 索引。 - connection_string 是一个 postgres 连接字符串。 - embedding_function 任何实现嵌入功能的函数

langchain.embeddings.base.Embeddings 接口。

  • collection_name 是要使用的集合的名称。(默认值:langchain)
    • 注意:这是存储嵌入数据的表的名称

      表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。

  • distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
    • EUCLIDEAN 是欧几里得距离。

    • COSINE 是余弦距离。

    • HAMMING 是汉明距离。

  • pre_delete_collection 如果为True,如果集合存在,将删除该集合。

    (默认值:False) - 对测试很有用。

属性

distance_function

distance_strategy

embeddings

如果可用,访问查询嵌入对象。

方法

__init__(connection_string, embedding_function)

aadd_documents(documents, **kwargs)

异步运行更多文档通过嵌入并添加到向量存储中。

aadd_texts(texts[, metadatas, ids])

异步运行更多文本通过嵌入并添加到向量存储中。

add_documents(documents, **kwargs)

在向量存储中添加或更新文档。

add_embeddings(texts, embeddings, metadatas, ...)

add_texts(texts[, metadatas, ids])

通过嵌入运行更多文本并将其添加到向量存储中。

adelete([ids])

异步删除通过向量ID或其他条件。

afrom_documents(documents, embedding, **kwargs)

异步返回从文档和嵌入初始化的VectorStore。

afrom_texts(texts, embedding[, metadatas, ids])

异步返回从文本和嵌入初始化的VectorStore。

aget_by_ids(ids, /)

异步通过ID获取文档。

amax_marginal_relevance_search(query[, k, ...])

异步返回使用最大边际相关性选择的文档。

amax_marginal_relevance_search_by_vector(...)

异步返回使用最大边际相关性选择的文档。

as_retriever(**kwargs)

返回从此VectorStore初始化的VectorStoreRetriever。

asearch(query, search_type, **kwargs)

异步返回与查询最相似的文档,使用指定的搜索类型。

asimilarity_search(query[, k])

异步返回与查询最相似的文档。

asimilarity_search_by_vector(embedding[, k])

异步返回与嵌入向量最相似的文档。

asimilarity_search_with_relevance_scores(query)

异步返回文档和相关分数,范围在[0, 1]之间。

asimilarity_search_with_score(*args, **kwargs)

异步运行带距离的相似性搜索。

connect()

connection_string_from_db_params(driver, ...)

从数据库参数返回连接字符串。

create_collection()

create_hnsw_extension()

create_hnsw_index([dims, m, ...])

在集合上创建HNSW索引。

create_tables_if_not_exists()

delete([ids])

通过ID或UUID删除向量。

delete_collection()

drop_index()

drop_table()

drop_tables()

from_documents(documents, embedding[, ...])

使用一组文档初始化向量存储。

from_embeddings(text_embeddings, embedding)

从原始文档和预生成的嵌入构建Lantern包装器。

from_existing_index(embedding[, ...])

获取现有Lantern存储的实例。此方法将返回存储的实例,而不会插入任何新的嵌入

from_texts(texts, embedding[, metadatas, ...])

从文本列表初始化Lantern向量存储。

get_by_ids(ids, /)

通过ID获取文档。

max_marginal_relevance_search(query[, k, ...])

返回使用最大边际相关性选择的文档。

max_marginal_relevance_search_by_vector(...)

返回使用最大边际相关性选择的文档

max_marginal_relevance_search_with_score(query)

返回使用最大边际相关性选择的文档及其分数。

max_marginal_relevance_search_with_score_by_vector(...)

返回使用最大边际相关性选择的文档及其分数

search(query, search_type, **kwargs)

使用指定的搜索类型返回与查询最相似的文档。

similarity_search(query[, k, filter])

返回与查询最相似的文档。

similarity_search_by_vector(embedding[, k, ...])

返回与嵌入向量最相似的文档。

similarity_search_with_relevance_scores(query)

返回文档和相关分数,分数范围在[0, 1]之间。

similarity_search_with_score(query[, k, filter])

使用距离进行相似性搜索。

similarity_search_with_score_by_vector(embedding)

Parameters:
  • connection_string (str)

  • embedding_function (Embeddings)

  • distance_strategy (DistanceStrategy)

  • collection_name (str)

  • collection_metadata (可选[字典])

  • pre_delete_collection (bool)

  • logger (可选[logging.Logger])

  • relevance_score_fn (可选[Callable[[float], float]])

__init__(connection_string: str, embedding_function: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, collection_name: str = 'langchain', collection_metadata: dict | None = None, pre_delete_collection: bool = False, logger: Logger | None = None, relevance_score_fn: Callable[[float], float] | None = None) None[source]#
Parameters:
  • connection_string (str)

  • embedding_function (Embeddings)

  • distance_strategy (DistanceStrategy)

  • collection_name (str)

  • collection_metadata (dict | None)

  • pre_delete_collection (bool)

  • logger (Logger | None)

  • relevance_score_fn (Callable[[float], float] | None)

Return type:

async aadd_documents(documents: list[Document], **kwargs: Any) list[str]#

通过嵌入异步运行更多文档并将其添加到向量存储中。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档。

  • kwargs (Any) – 额外的关键字参数。

Returns:

已添加文本的ID列表。

Raises:

ValueError – 如果ID的数量与文档的数量不匹配。

Return type:

列表[字符串]

async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str]#

异步运行更多文本通过嵌入并添加到向量存储中。

Parameters:
  • texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。

  • metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。

  • ids (list[str] | None) – 可选的列表

  • **kwargs (Any) – 向量存储特定参数。

Returns:

将文本添加到向量存储中后的ID列表。

Raises:
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果id的数量与文本的数量不匹配。

Return type:

列表[字符串]

add_documents(documents: list[Document], **kwargs: Any) list[str]#

在向量存储中添加或更新文档。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档。

  • kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。

Returns:

已添加文本的ID列表。

Raises:

ValueError – 如果id的数量与文档的数量不匹配。

Return type:

列表[字符串]

add_embeddings(texts: List[str], embeddings: List[List[float]], metadatas: List[dict], ids: List[str], **kwargs: Any) None[source]#
Parameters:
  • 文本 (列表[字符串])

  • embeddings (列表[列表[浮点数]])

  • metadatas (列表[字典])

  • ids (列表[字符串])

  • kwargs (Any)

Return type:

add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, ids: List[str] | None = None, **kwargs: Any) List[str][source]#

通过嵌入运行更多文本并添加到向量存储中。

Parameters:
  • texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。

  • metadatas (List[dict] | None) – 可选的与文本关联的元数据列表。

  • ids (List[str] | None) – 可选的与文本关联的ID列表。

  • **kwargs (Any) – 向量存储特定参数。 其中一个 kwargs 应该是 ids,这是一个与文本相关联的 ID 列表。

Returns:

将文本添加到向量存储中后的ID列表。

Raises:
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果id的数量与文本的数量不匹配。

Return type:

列表[str]

async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None#

通过向量ID或其他条件异步删除。

Parameters:
  • ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

Returns:

如果删除成功则为真, 否则为假,如果未实现则为无。

Return type:

可选[布尔]

async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

异步返回从文档和嵌入初始化的VectorStore。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档列表。

  • embedding (Embeddings) – 使用的嵌入函数。

  • kwargs (Any) – 额外的关键字参数。

Returns:

从文档和嵌入初始化的VectorStore。

Return type:

VectorStore

async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST#

异步返回从文本和嵌入初始化的VectorStore。

Parameters:
  • texts (list[str]) – 要添加到向量存储中的文本。

  • embedding (Embeddings) – 使用的嵌入函数。

  • metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。

  • ids (list[str] | None) – 可选的与文本关联的ID列表。

  • kwargs (Any) – 额外的关键字参数。

Returns:

VectorStore 从文本和嵌入初始化。

Return type:

VectorStore

async aget_by_ids(ids: Sequence[str], /) list[Document]#

通过ID异步获取文档。

返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。

用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。

如果没有找到某些ID的文档,此方法不应引发异常。

Parameters:

ids (Sequence[str]) – 要检索的ID列表。

Returns:

文档列表。

Return type:

列表[Document]

在版本0.2.11中添加。

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • kwargs (Any)

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

async amax_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document]#

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • embedding (list[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever#

返回从此VectorStore初始化的VectorStoreRetriever。

Parameters:

**kwargs (Any) –

传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
可以包括以下内容:

k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值

用于similarity_score_threshold

fetch_k: 传递给MMR算法的文档数量

(默认:20)

lambda_mult: MMR返回结果的多样性;

1表示最小多样性,0表示最大多样性。(默认:0.5)

filter: 按文档元数据过滤

Returns:

VectorStore的检索器类。

Return type:

VectorStoreRetriever

示例:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) list[Document]#

异步返回与查询最相似的文档,使用指定的搜索类型。

Parameters:
  • query (str) – 输入文本。

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Raises:

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

Return type:

列表[Document]

异步返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Return type:

列表[Document]

async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document]#

异步返回与嵌入向量最相似的文档。

Parameters:
  • embedding (list[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询向量最相似的文档列表。

Return type:

列表[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

异步返回文档和相关度分数,范围在[0, 1]之间。

0 表示不相似,1 表示最相似。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) –

    传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值

    过滤检索到的文档集

Returns:

(文档,相似度分数)的元组列表

Return type:

列表[元组[Document, 浮点数]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]]#

异步运行带有距离的相似性搜索。

Parameters:
  • *args (Any) – 传递给搜索方法的参数。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[Document, 浮点数]]

connect() Connection[来源]#
Return type:

连接

classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) str[source]#

从数据库参数返回连接字符串。

Parameters:
  • driver (str)

  • host (str)

  • port (int)

  • 数据库 (str)

  • 用户 (字符串)

  • password (str)

Return type:

字符串

create_collection() None[source]#
Return type:

create_hnsw_extension() None[来源]#
Return type:

create_hnsw_index(dims: int = 1536, m: int = 16, ef_construction: int = 64, ef_search: int = 64, **_kwargs: Any) None[source]#

在集合上创建HNSW索引。

Optional Keyword Args for HNSW Index:

引擎: “nmslib”, “faiss”, “lucene”; 默认: “nmslib”

ef: 在k-NN搜索期间使用的动态列表的大小。较高的值会导致更准确但更慢的搜索;默认值:64

ef_construction: 用于k-NN图创建期间的动态列表大小。 较高的值会导致更准确的图,但索引速度较慢; 默认值:64

m: 为每个新元素创建的双向链接数量。对内存消耗有很大影响。范围在2到100之间;默认值:16

dims: 集合中向量的维度。默认值:1536

Parameters:
  • dims (int)

  • m (int)

  • ef_construction (int)

  • ef_search (int)

  • _kwargs (Any)

Return type:

create_tables_if_not_exists() None[source]#
Return type:

delete(ids: List[str] | None = None, **kwargs: Any) None[来源]#

通过ID或UUID删除向量。

Parameters:
  • ids (List[str] | None) – 要删除的ID列表。

  • kwargs (Any)

Return type:

delete_collection() None[source]#
Return type:

drop_index() None[source]#
Return type:

drop_table() None[source]#
Return type:

drop_tables() None[source]#
Return type:

classmethod from_documents(documents: List[Document], embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: List[str] | None = None, pre_delete_collection: bool = False, **kwargs: Any) Lantern[source]#

使用一组文档初始化向量存储。

需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。

  • connection_string 是一个 postgres 连接字符串。

  • documents 是用于初始化向量存储的 Document 列表

  • embeddingEmbeddings,将用于

    嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。

  • collection_name 是要使用的集合的名称。(默认值:langchain)
    • 注意:这是存储嵌入数据的表的名称

      表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。

  • distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
    • EUCLIDEAN 是欧几里得距离。

    • COSINE 是余弦距离。

    • HAMMING 是汉明距离。

  • ids 要插入到集合中的行ID。

  • pre_delete_collection 如果为True,如果集合存在,将删除该集合。

    (默认值: False) - 对测试很有用。

Parameters:
  • 文档 (列表[Document])

  • embedding (Embeddings)

  • collection_name (str)

  • distance_strategy (DistanceStrategy)

  • ids (列表[字符串] | )

  • pre_delete_collection (bool)

  • kwargs (Any)

Return type:

Lantern

classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: List[dict] | None = None, collection_name: str = 'langchain', ids: List[str] | None = None, pre_delete_collection: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, **kwargs: Any) Lantern[source]#

从原始文档和预生成的嵌入中构建Lantern包装器。

需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。

列表 ids, text_embeddings, metadatas 中元素的顺序应匹配,以便每一行都能与正确的值关联。

  • connection_string 是用于 postgres 数据库的完整连接字符串

  • text_embeddings 是一个包含元组 (text, embedding) 的数组

    用于插入到集合中。

  • embeddingEmbeddings,将用于

    嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。

  • metadatas 要插入集合的行元数据。

  • collection_name 是要使用的集合的名称。(默认值:langchain)
    • 注意:这是存储嵌入数据的表的名称

      表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。

  • ids 要插入到集合中的行ID。

  • pre_delete_collection 如果为True,如果集合存在,将删除该集合。

    (默认值: False) - 对测试很有用。

  • distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
    • EUCLIDEAN 是欧几里得距离。

    • COSINE 是余弦距离。

    • HAMMING 是汉明距离。

Parameters:
  • text_embeddings (List[Tuple[str, List[float]]])

  • embedding (Embeddings)

  • metadatas (列表[字典] | )

  • collection_name (str)

  • ids (列表[字符串] | )

  • pre_delete_collection (bool)

  • distance_strategy (DistanceStrategy)

  • kwargs (Any)

Return type:

Lantern

classmethod from_existing_index(embedding: Embeddings, collection_name: str = 'langchain', pre_delete_collection: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, **kwargs: Any) Lantern[source]#

获取现有Lantern存储的实例。此方法将返回存储的实例,而不会插入任何新的嵌入。

需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。

  • connection_string 是一个 postgres 连接字符串。

  • embeddingEmbeddings,将用于

    嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。

  • collection_name 是要使用的集合的名称。(默认值:langchain)
    • 注意:这是存储嵌入数据的表的名称

      表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。

  • ids 要插入到集合中的行ID。

  • pre_delete_collection 如果为True,如果集合存在,将删除该集合。

    (默认值: False) - 对测试很有用。

  • distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
    • EUCLIDEAN 是欧几里得距离。

    • COSINE 是余弦距离。

    • HAMMING 是汉明距离。

Parameters:
Return type:

Lantern

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: List[str] | None = None, pre_delete_collection: bool = False, **kwargs: Any) Lantern[source]#

从文本列表初始化Lantern向量存储。 嵌入将使用提供的embedding类生成。

列表 ids, texts, metadatas 中元素的顺序应匹配,以便每一行都能与正确的值关联。

需要Postgres连接字符串 “可以将其作为connection_string参数传递 或者设置LANTERN_CONNECTION_STRING环境变量。

  • connection_string 是用于 postgres 数据库的完整连接字符串

  • texts 要插入到集合中的文本。

  • embeddingEmbeddings,将用于

    嵌入发送的文本。如果没有发送,则将使用多语言的 Tensorflow 通用句子编码器。

  • metadatas 要插入集合的行元数据。

  • collection_name 是要使用的集合的名称。(默认值:langchain)
    • 注意:这是存储嵌入数据的表的名称

      表将在初始化存储时创建(如果不存在) 因此,请确保用户具有创建表的正确权限。

  • distance_strategy 是使用的距离策略。(默认:EUCLIDEAN)
    • EUCLIDEAN 是欧几里得距离。

    • COSINE 是余弦距离。

    • HAMMING 是汉明距离。

  • ids 要插入到集合中的行ID。

  • pre_delete_collection 如果为True,如果集合存在,将删除该集合。

    (默认值: False) - 对测试很有用。

Parameters:
  • 文本 (列表[字符串])

  • embedding (Embeddings)

  • metadatas (列表[字典] | )

  • collection_name (str)

  • distance_strategy (DistanceStrategy)

  • ids (列表[字符串] | )

  • pre_delete_collection (bool)

  • kwargs (Any)

Return type:

Lantern

get_by_ids(ids: Sequence[str], /) list[Document]#

通过ID获取文档。

返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。

用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。

如果没有找到某些ID的文档,此方法不应引发异常。

Parameters:

ids (Sequence[str]) – 要检索的ID列表。

Returns:

文档列表。

Return type:

列表[Document]

在版本0.2.11中添加。

返回使用最大边际相关性选择的文档。

Maximal marginal relevance optimizes for similarity to query AND diversity

在选定的文档中。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。

  • kwargs (Any)

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document][source]#
Return docs selected using the maximal marginal relevance

转换为嵌入向量。

Maximal marginal relevance optimizes for similarity to query AND diversity

在选定的文档中。

Parameters:
  • embedding (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。

  • kwargs (Any)

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

max_marginal_relevance_search_with_score(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: dict | None = None, **kwargs: Any) List[Tuple[Document, float]][source]#

返回使用最大边际相关性选择的文档及其分数。

Maximal marginal relevance optimizes for similarity to query AND diversity

在选定的文档中。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。

  • kwargs (Any)

Returns:

通过最大边际选择的文档列表

与查询的相关性及每个文档的得分。

Return type:

列表[元组[Document, 浮点数]]

max_marginal_relevance_search_with_score_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Tuple[Document, float]][source]#
Return docs selected using the maximal marginal relevance with score

转换为嵌入向量。

Maximal marginal relevance optimizes for similarity to query AND diversity

在选定的文档中。

Parameters:
  • embedding (List[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要获取并传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • filter (可选[Dict[str, str]]) – 通过元数据进行过滤。默认为 None。

  • kwargs (Any)

Returns:

通过最大边际选择的文档列表

与查询的相关性及每个文档的得分。

Return type:

列表[元组[Document, 浮点数]]

search(query: str, search_type: str, **kwargs: Any) list[Document]#

使用指定的搜索类型返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Raises:

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

Return type:

列表[Document]

返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

  • filter (字典 | )

  • **kwargs

Returns:

与查询最相似的文档列表。

Return type:

列表[文档]

similarity_search_by_vector(embedding: List[float], k: int = 4, filter: dict | None = None, **kwargs: Any) List[Document][source]#

返回与嵌入向量最相似的文档。

Parameters:
  • embedding (List[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

  • filter (字典 | )

  • **kwargs

Returns:

与查询向量最相似的文档列表。

Return type:

列表[文档]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

返回文档和相关度分数,范围在[0, 1]之间。

0 表示不相似,1 表示最相似。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) –

    传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值

    用于过滤检索到的文档集。

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[Document, 浮点数]]

similarity_search_with_score(query: str, k: int = 4, filter: dict | None = None) List[Tuple[Document, float]][来源]#

使用距离运行相似性搜索。

Parameters:
  • *args – 传递给搜索方法的参数。

  • **kwargs – 传递给搜索方法的参数。

  • query (str)

  • k (整数)

  • filter (字典 | )

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[文档, 浮点数]]

similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: dict | None = None) List[Tuple[Document, float]][source]#
Parameters:
  • embedding (列表[浮点数])

  • k (整数)

  • filter (字典 | )

Return type:

列表[元组[文档, 浮点数]]

使用 Lantern 的示例