HanaDB#

class langchain_community.vectorstores.hanavector.HanaDB(connection: dbapi.Connection, embedding: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, table_name: str = 'EMBEDDINGS', content_column: str = 'VEC_TEXT', metadata_column: str = 'VEC_META', vector_column: str = 'VEC_VECTOR', vector_column_length: int = -1, *, specific_metadata_columns: List[str] | None = None)[来源]#

SAP HANA 云向量引擎

使用此类的先决条件是安装hdbcli Python包。

可以通过提供一个嵌入函数和一个现有的数据库连接来创建HanaDB向量存储。可选地,还可以指定要使用的表和列的名称。

属性

embeddings

如果可用,访问查询嵌入对象。

方法

__init__(connection, embedding[, ...])

aadd_documents(documents, **kwargs)

异步运行更多文档通过嵌入并添加到向量存储中。

aadd_texts(texts[, metadatas, ids])

异步运行更多文本通过嵌入并添加到向量存储中。

add_documents(documents, **kwargs)

在向量存储中添加或更新文档。

add_texts(texts[, metadatas, embeddings])

向向量存储中添加更多文本。

adelete([ids, filter])

根据向量ID或其他条件删除。

afrom_documents(documents, embedding, **kwargs)

异步返回从文档和嵌入初始化的VectorStore。

afrom_texts(texts, embedding[, metadatas, ids])

异步返回从文本和嵌入初始化的VectorStore。

aget_by_ids(ids, /)

异步通过ID获取文档。

amax_marginal_relevance_search(query[, k, ...])

异步返回使用最大边际相关性选择的文档。

amax_marginal_relevance_search_by_vector(...)

返回使用最大边际相关性选择的文档。

as_retriever(**kwargs)

返回从此 VectorStore 初始化的 VectorStoreRetriever。

asearch(query, search_type, **kwargs)

异步返回与查询最相似的文档,使用指定的搜索类型。

asimilarity_search(query[, k])

异步返回与查询最相似的文档。

asimilarity_search_by_vector(embedding[, k])

异步返回与嵌入向量最相似的文档。

asimilarity_search_with_relevance_scores(query)

异步返回文档和相关度分数,范围在[0, 1]之间。

asimilarity_search_with_score(*args, **kwargs)

异步运行带距离的相似性搜索。

create_hnsw_index([m, ef_construction, ...])

在指定的表和向量列上创建HNSW向量索引,带有可选的构建和搜索配置。

delete([ids, filter])

通过带有元数据值的过滤器删除条目

from_documents(documents, embedding, **kwargs)

返回从文档和嵌入初始化的VectorStore。

from_texts(texts, embedding[, metadatas, ...])

从原始文档创建HanaDB实例。这是一个用户友好的接口,它:1. 嵌入文档。2. 如果表不存在则创建表。3. 将文档添加到表中。这旨在快速入门。

get_by_ids(ids, /)

通过ID获取文档。

max_marginal_relevance_search(query[, k, ...])

返回使用最大边际相关性选择的文档。

max_marginal_relevance_search_by_vector(...)

返回使用最大边际相关性选择的文档。

search(query, search_type, **kwargs)

使用指定的搜索类型返回与查询最相似的文档。

similarity_search(query[, k, filter])

返回与查询最相似的文档。

similarity_search_by_vector(embedding[, k, ...])

返回与嵌入向量最相似的文档。

similarity_search_with_relevance_scores(query)

返回文档和相关度分数,范围在[0, 1]之间。

similarity_search_with_score(query[, k, filter])

返回与查询最相似的文档和分数值。

similarity_search_with_score_and_vector_by_vector(...)

返回与给定嵌入最相似的文档。

similarity_search_with_score_by_vector(embedding)

返回与给定嵌入最相似的文档。

Parameters:
  • connection (dbapi.Connection)

  • embedding (Embeddings)

  • distance_strategy (DistanceStrategy)

  • table_name (str)

  • content_column (str)

  • metadata_column (str)

  • vector_column (str)

  • vector_column_length (int)

  • specific_metadata_columns (可选[列表[字符串]])

__init__(connection: dbapi.Connection, embedding: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, table_name: str = 'EMBEDDINGS', content_column: str = 'VEC_TEXT', metadata_column: str = 'VEC_META', vector_column: str = 'VEC_VECTOR', vector_column_length: int = -1, *, specific_metadata_columns: List[str] | None = None)[来源]#
Parameters:
  • connection (dbapi.Connection)

  • embedding (Embeddings)

  • distance_strategy (DistanceStrategy)

  • table_name (str)

  • content_column (str)

  • metadata_column (str)

  • vector_column (str)

  • vector_column_length (int)

  • specific_metadata_columns (可选[列表[字符串]])

async aadd_documents(documents: list[Document], **kwargs: Any) list[str]#

通过嵌入异步运行更多文档并将其添加到向量存储中。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档。

  • kwargs (Any) – 额外的关键字参数。

Returns:

已添加文本的ID列表。

Raises:

ValueError – 如果ID的数量与文档的数量不匹配。

Return type:

列表[字符串]

async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str]#

异步运行更多文本通过嵌入并添加到向量存储中。

Parameters:
  • texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。

  • metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。

  • ids (list[str] | None) – 可选的列表

  • **kwargs (Any) – 向量存储特定参数。

Returns:

将文本添加到向量存储中后的ID列表。

Raises:
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果id的数量与文本的数量不匹配。

Return type:

列表[字符串]

add_documents(documents: list[Document], **kwargs: Any) list[str]#

在向量存储中添加或更新文档。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档。

  • kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。

Returns:

已添加文本的ID列表。

Raises:

ValueError – 如果id的数量与文档的数量不匹配。

Return type:

列表[字符串]

add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, embeddings: List[List[float]] | None = None, **kwargs: Any) List[str][source]#

向向量存储中添加更多文本。

Parameters:
  • texts (Iterable[str]) – 要添加到向量存储中的字符串/文本的可迭代对象。

  • metadatas (Optional[List[dict]], optional) – 可选的元数据列表。 默认为 None。

  • embeddings (可选[列表[列表[浮点数]]], 可选) – 可选预生成的嵌入。默认为 None。

  • kwargs (Any)

Returns:

空列表

Return type:

列表[str]

async adelete(ids: List[str] | None = None, filter: dict | None = None) bool | None[来源]#

根据向量ID或其他条件删除。

Parameters:
  • ids (List[str] | None) – 要删除的ID列表。

  • filter (字典 | )

Returns:

如果删除成功则为真, 否则为假,如果未实现则为无。

Return type:

可选[布尔]

async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

异步返回从文档和嵌入初始化的VectorStore。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档列表。

  • embedding (Embeddings) – 使用的嵌入函数。

  • kwargs (Any) – 额外的关键字参数。

Returns:

从文档和嵌入初始化的VectorStore。

Return type:

VectorStore

async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST#

异步返回从文本和嵌入初始化的VectorStore。

Parameters:
  • texts (list[str]) – 要添加到向量存储中的文本。

  • embedding (Embeddings) – 使用的嵌入函数。

  • metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。

  • ids (list[str] | None) – 可选的与文本关联的ID列表。

  • kwargs (Any) – 额外的关键字参数。

Returns:

VectorStore 从文本和嵌入初始化。

Return type:

VectorStore

async aget_by_ids(ids: Sequence[str], /) list[Document]#

通过ID异步获取文档。

返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。

用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。

如果没有找到某些ID的文档,此方法不应引发异常。

Parameters:

ids (Sequence[str]) – 要检索的ID列表。

Returns:

文档列表。

Return type:

列表[Document]

在版本0.2.11中添加。

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • kwargs (Any)

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5) List[Document][source]#

返回使用最大边际相关性选择的文档。

Parameters:
  • embedding (列表[浮点数])

  • k (整数)

  • fetch_k (int)

  • lambda_mult (float)

Return type:

列表[文档]

as_retriever(**kwargs: Any) VectorStoreRetriever#

返回从此VectorStore初始化的VectorStoreRetriever。

Parameters:

**kwargs (Any) –

传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
可以包括以下内容:

k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值

用于similarity_score_threshold

fetch_k: 传递给MMR算法的文档数量

(默认:20)

lambda_mult: MMR返回结果的多样性;

1表示最小多样性,0表示最大多样性。(默认:0.5)

filter: 按文档元数据过滤

Returns:

VectorStore的检索器类。

Return type:

VectorStoreRetriever

示例:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) list[Document]#

异步返回与查询最相似的文档,使用指定的搜索类型。

Parameters:
  • query (str) – 输入文本。

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Raises:

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

Return type:

列表[Document]

异步返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Return type:

列表[Document]

async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document]#

异步返回与嵌入向量最相似的文档。

Parameters:
  • embedding (list[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询向量最相似的文档列表。

Return type:

列表[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

异步返回文档和相关度分数,范围在[0, 1]之间。

0 表示不相似,1 表示最相似。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) –

    传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值

    过滤检索到的文档集

Returns:

(文档,相似度分数)的元组列表

Return type:

列表[元组[Document, 浮点数]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]]#

异步运行带有距离的相似性搜索。

Parameters:
  • *args (Any) – 传递给搜索方法的参数。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[Document, 浮点数]]

create_hnsw_index(m: int | None = None, ef_construction: int | None = None, ef_search: int | None = None, index_name: str | None = None) None[source]#

在指定的表和向量列上创建一个HNSW向量索引,带有可选的构建和搜索配置。如果没有提供配置,则使用数据库中的默认参数。如果提供的值超出有效范围,将会引发错误。 索引始终以在线模式创建。

Parameters:
  • m (int | None) – (可选)每个图节点的最大邻居数 (有效范围:[4, 1000])

  • ef_construction (int | None) – (可选)构建图时考虑的最大候选数(有效范围:[1, 100000])

  • ef_search (int | None) – (可选)用于top-k最近邻查询的最小候选数(有效范围:[1, 100000])

  • index_name (str | None) – (可选)自定义索引名称。默认为 __idx

Return type:

delete(ids: List[str] | None = None, filter: dict | None = None) bool | None[source]#

通过带有元数据值的过滤器删除条目

Parameters:
  • ids (List[str] | None) – 不支持使用ids进行删除!将会引发ValueError。

  • filter (dict | None) – 一个包含元数据字段和值的字典,用于过滤。 空的过滤器({})将删除表中的所有条目。

Returns:

如果删除在技术上是成功的,则为真。 由于过滤器不匹配而删除零条目也是成功的。

Return type:

可选[布尔]

classmethod from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

返回从文档和嵌入初始化的VectorStore。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档列表。

  • embedding (Embeddings) – 使用的嵌入函数。

  • kwargs (Any) – 额外的关键字参数。

Returns:

从文档和嵌入初始化的VectorStore。

Return type:

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, connection: dbapi.Connection = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, table_name: str = 'EMBEDDINGS', content_column: str = 'VEC_TEXT', metadata_column: str = 'VEC_META', vector_column: str = 'VEC_VECTOR', vector_column_length: int = -1, *, specific_metadata_columns: List[str] | None = None)[来源]#

从原始文档创建一个HanaDB实例。 这是一个用户友好的界面,它:

  1. 嵌入文档。

  2. 如果表尚不存在,则创建表。

  3. 将文档添加到表中。

这是快速入门的一种方式。

Parameters:
  • 文本 (列表[字符串])

  • embedding (Embeddings)

  • metadatas (可选[列表[字典]])

  • connection (dbapi.Connection)

  • distance_strategy (DistanceStrategy)

  • table_name (str)

  • content_column (str)

  • metadata_column (str)

  • vector_column (str)

  • vector_column_length (int)

  • specific_metadata_columns (可选[列表[字符串]])

get_by_ids(ids: Sequence[str], /) list[Document]#

通过ID获取文档。

返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。

用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。

如果没有找到某些ID的文档,此方法不应引发异常。

Parameters:

ids (Sequence[str]) – 要检索的ID列表。

Returns:

文档列表。

Return type:

列表[Document]

在版本0.2.11中添加。

返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • query (str) – 搜索查询文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要获取并传递给MMR算法的文档数量。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • filter (dict | None) –

    对元数据属性进行过滤,例如: {

    ”str_property”: “foo”, “int_property”: 123

    }

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[文档]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: dict | None = None) List[Document][来源]#

返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • embedding (List[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • **kwargs – 传递给搜索方法的参数。

  • filter (字典 | )

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[文档]

search(query: str, search_type: str, **kwargs: Any) list[Document]#

使用指定的搜索类型返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Raises:

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

Return type:

列表[Document]

返回与查询最相似的文档。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • filter (dict | None) – 一个包含元数据字段和值的字典,用于过滤。 默认为 None。

Returns:

与查询最相似的文档列表

Return type:

列表[文档]

similarity_search_by_vector(embedding: List[float], k: int = 4, filter: dict | None = None) List[Document][source]#

返回与嵌入向量最相似的文档。

Parameters:
  • embedding (List[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • filter (dict | None) – 一个包含元数据字段和值的字典,用于过滤。 默认为 None。

Returns:

与查询向量最相似的文档列表。

Return type:

列表[文档]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

返回文档和相关度分数,范围在[0, 1]之间。

0 表示不相似,1 表示最相似。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) –

    传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值

    用于过滤检索到的文档集。

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[Document, 浮点数]]

similarity_search_with_score(query: str, k: int = 4, filter: dict | None = None) List[Tuple[Document, float]][source]#

返回与查询最相似的文档和分数值。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • filter (dict | None) – 用于过滤的元数据字段和值的字典。默认为 None。

Returns:

与查询最相似的元组列表(包含一个文档和一个分数)

Return type:

列表[元组[文档, 浮点数]]

similarity_search_with_score_and_vector_by_vector(embedding: List[float], k: int = 4, filter: dict | None = None) List[Tuple[Document, float, List[float]]][source]#

返回与给定嵌入最相似的文档。

Parameters:
  • query – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • filter (dict | None) – 一个包含元数据字段和值的字典,用于过滤。 默认为 None。

  • embedding (列表[浮点数])

Returns:

与查询最相似的文档列表及其分数和每个文档的嵌入向量

Return type:

列表[元组[文档, 浮点数, 列表[浮点数]]]

similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: dict | None = None) List[Tuple[Document, float]][source]#

返回与给定嵌入最相似的文档。

Parameters:
  • query – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • filter (dict | None) – 用于过滤的元数据字段和值的字典。默认为 None。

  • embedding (列表[浮点数])

Returns:

与查询最相似的文档列表及每个文档的得分

Return type:

列表[元组[文档, 浮点数]]

使用HanaDB的示例