Skip to main content
Open In ColabOpen on GitHub

SAP HANA 云向量引擎

SAP HANA Cloud Vector Engine 是一个完全集成到 SAP HANA Cloud 数据库中的向量存储。

你需要安装 langchain-community 使用 pip install -qU langchain-community 来使用这个集成

设置

安装HANA数据库驱动程序。

# Pip install necessary package
%pip install --upgrade --quiet hdbcli

对于OpenAIEmbeddings,我们使用环境中的OpenAI API密钥。

import os
# Use OPENAI_API_KEY env variable
# os.environ["OPENAI_API_KEY"] = "Your OpenAI API key"

创建一个到HANA Cloud实例的数据库连接。

from dotenv import load_dotenv
from hdbcli import dbapi

load_dotenv()
# Use connection settings from the environment
connection = dbapi.connect(
address=os.environ.get("HANA_DB_ADDRESS"),
port=os.environ.get("HANA_DB_PORT"),
user=os.environ.get("HANA_DB_USER"),
password=os.environ.get("HANA_DB_PASSWORD"),
autocommit=True,
sslValidateCertificate=False,
)

示例

加载示例文档“state_of_the_union.txt”并从中创建块。

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.hanavector import HanaDB
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

text_documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
text_chunks = text_splitter.split_documents(text_documents)
print(f"Number of document chunks: {len(text_chunks)}")

embeddings = OpenAIEmbeddings()
Number of document chunks: 88

为HANA数据库创建一个LangChain VectorStore接口,并指定用于访问向量嵌入的表(集合)。

db = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)

将加载的文档块添加到表中。对于此示例,我们删除表中可能存在的任何先前运行的内容。

# Delete already existing documents from the table
db.delete(filter={})

# add the loaded document chunks
db.add_documents(text_chunks)
[]

执行查询以从前一步添加的文档块中获取两个最佳匹配的文档块。 默认情况下,搜索使用“余弦相似度”。

query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)

for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.

While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.

使用“欧几里得距离”查询相同内容。结果应与“余弦相似度”相同。

from langchain_community.vectorstores.utils import DistanceStrategy

db = HanaDB(
embedding=embeddings,
connection=connection,
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,
table_name="STATE_OF_THE_UNION",
)

query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
API Reference:DistanceStrategy
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.

While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.

最大边际相关性搜索 (MMR)

Maximal marginal relevance 优化了与查询的相似性和所选文档之间的多样性。首先将从数据库中检索前20个(fetch_k)项目。然后,MMR算法将找到最佳的2个(k)匹配项。

docs = db.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.

In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.

Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.

创建HNSW向量索引

向量索引可以显著加快向量的top-k最近邻查询。用户可以使用create_hnsw_index函数创建分层可导航小世界(HNSW)向量索引。

有关在数据库级别创建索引的更多信息,请参阅官方文档

# HanaDB instance uses cosine similarity as default:
db_cosine = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)

# Attempting to create the HNSW index with default parameters
db_cosine.create_hnsw_index() # If no other parameters are specified, the default values will be used
# Default values: m=64, ef_construction=128, ef_search=200
# The default index name will be: STATE_OF_THE_UNION_COSINE_SIMILARITY_IDX (verify this naming pattern in HanaDB class)


# Creating a HanaDB instance with L2 distance as the similarity function and defined values
db_l2 = HanaDB(
embedding=embeddings,
connection=connection,
table_name="STATE_OF_THE_UNION",
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, # Specify L2 distance
)

# This will create an index based on L2 distance strategy.
db_l2.create_hnsw_index(
index_name="STATE_OF_THE_UNION_L2_index",
m=100, # Max number of neighbors per graph node (valid range: 4 to 1000)
ef_construction=200, # Max number of candidates during graph construction (valid range: 1 to 100000)
ef_search=500, # Min number of candidates during the search (valid range: 1 to 100000)
)

# Use L2 index to perform MMR
docs = db_l2.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.

In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.

Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.

关键点:

  • 相似度函数: 索引的相似度函数默认是余弦相似度。如果你想使用不同的相似度函数(例如,L2距离),你需要在初始化HanaDB实例时指定它。
  • 默认参数:在create_hnsw_index函数中,如果用户没有为参数如mef_constructionef_search提供自定义值,将自动使用默认值(例如,m=64ef_construction=128ef_search=200)。这些值确保索引在创建时具有合理的性能,而无需用户干预。

基本向量存储操作

db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_BASIC"
)

# Delete already existing documents from the table
db.delete(filter={})
True

我们可以将简单的文本文档添加到现有表中。

docs = [Document(page_content="Some text"), Document(page_content="Other docs")]
db.add_documents(docs)
[]

添加带有元数据的文档。

docs = [
Document(
page_content="foo",
metadata={"start": 100, "end": 150, "doc_name": "foo.txt", "quality": "bad"},
),
Document(
page_content="bar",
metadata={"start": 200, "end": 250, "doc_name": "bar.txt", "quality": "good"},
),
]
db.add_documents(docs)
[]

查询具有特定元数据的文档。

docs = db.similarity_search("foobar", k=2, filter={"quality": "bad"})
# With filtering on "quality"=="bad", only one document should be returned
for doc in docs:
print("-" * 80)
print(doc.page_content)
print(doc.metadata)
--------------------------------------------------------------------------------
foo
{'start': 100, 'end': 150, 'doc_name': 'foo.txt', 'quality': 'bad'}

删除具有特定元数据的文档。

db.delete(filter={"quality": "bad"})

# Now the similarity search with the same filter will return no results
docs = db.similarity_search("foobar", k=2, filter={"quality": "bad"})
print(len(docs))
0

高级筛选

除了基本的基于值的过滤功能外,还可以使用更高级的过滤功能。 下表显示了可用的过滤操作符。

操作符语义
$eq等于 (==)
$ne不等于 (!=)
$lt小于 (<)
$lte小于或等于 (<=)
$gt大于 (>)
$gte大于或等于 (>=)
$in包含在一组给定值中 (in)
$nin不包含在一组给定值中(不在)
$between在两个边界值之间的范围内
$like基于SQL中的“LIKE”语义的文本相等性(使用“%”作为通配符)
$and逻辑“与”,支持2个或更多操作数
$or逻辑“或”,支持2个或更多操作数
# Prepare some test documents
docs = [
Document(
page_content="First",
metadata={"name": "adam", "is_active": True, "id": 1, "height": 10.0},
),
Document(
page_content="Second",
metadata={"name": "bob", "is_active": False, "id": 2, "height": 5.7},
),
Document(
page_content="Third",
metadata={"name": "jane", "is_active": True, "id": 3, "height": 2.4},
),
]

db = HanaDB(
connection=connection,
embedding=embeddings,
table_name="LANGCHAIN_DEMO_ADVANCED_FILTER",
)

# Delete already existing documents from the table
db.delete(filter={})
db.add_documents(docs)


# Helper function for printing filter results
def print_filter_result(result):
if len(result) == 0:
print("<empty result>")
for doc in result:
print(doc.metadata)

使用 $ne, $gt, $gte, $lt, $lte 进行过滤

advanced_filter = {"id": {"$ne": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$gt": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$gte": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$lt": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$lte": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'id': {'$ne': 1}}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
{'name': 'jane', 'is_active': True, 'id': 3, 'height': 2.4}
Filter: {'id': {'$gt': 1}}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
{'name': 'jane', 'is_active': True, 'id': 3, 'height': 2.4}
Filter: {'id': {'$gte': 1}}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
{'name': 'jane', 'is_active': True, 'id': 3, 'height': 2.4}
Filter: {'id': {'$lt': 1}}
<empty result>
Filter: {'id': {'$lte': 1}}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}

使用 $between, $in, $nin 进行过滤

advanced_filter = {"id": {"$between": (1, 2)}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$in": ["adam", "bob"]}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$nin": ["adam", "bob"]}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'id': {'$between': (1, 2)}}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$in': ['adam', 'bob']}}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$nin': ['adam', 'bob']}}
{'name': 'jane', 'is_active': True, 'id': 3, 'height': 2.4}

使用$like进行文本过滤

advanced_filter = {"name": {"$like": "a%"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$like": "%a%"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'name': {'$like': 'a%'}}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
Filter: {'name': {'$like': '%a%'}}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'jane', 'is_active': True, 'id': 3, 'height': 2.4}

结合使用 $and, $or 进行过滤

advanced_filter = {"$or": [{"id": 1}, {"name": "bob"}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"$and": [{"id": 1}, {"id": 2}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"$or": [{"id": 1}, {"id": 2}, {"id": 3}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'$or': [{'id': 1}, {'name': 'bob'}]}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'$and': [{'id': 1}, {'id': 2}]}
<empty result>
Filter: {'$or': [{'id': 1}, {'id': 2}, {'id': 3}]}
{'name': 'adam', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'bob', 'is_active': False, 'id': 2, 'height': 5.7}
{'name': 'jane', 'is_active': True, 'id': 3, 'height': 2.4}

在链中使用VectorStore作为检索器以实现检索增强生成(RAG)

from langchain.memory import ConversationBufferMemory
from langchain_openai import ChatOpenAI

# Access the vector DB with a new table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name="LANGCHAIN_DEMO_RETRIEVAL_CHAIN",
)

# Delete already existing entries from the table
db.delete(filter={})

# add the loaded document chunks from the "State Of The Union" file
db.add_documents(text_chunks)

# Create a retriever instance of the vector store
retriever = db.as_retriever()

定义提示。

from langchain_core.prompts import PromptTemplate

prompt_template = """
You are an expert in state of the union topics. You are provided multiple context items that are related to the prompt you have to answer.
Use the following pieces of context to answer the question at the end.

'''
{context}
'''

Question: {question}
"""

PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
API Reference:PromptTemplate

创建ConversationalRetrievalChain,它负责处理聊天历史记录和检索要添加到提示中的相似文档块。

from langchain.chains import ConversationalRetrievalChain

llm = ChatOpenAI(model="gpt-3.5-turbo")
memory = ConversationBufferMemory(
memory_key="chat_history", output_key="answer", return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
db.as_retriever(search_kwargs={"k": 5}),
return_source_documents=True,
memory=memory,
verbose=False,
combine_docs_chain_kwargs={"prompt": PROMPT},
)

提出第一个问题(并验证使用了多少个文本块)。

question = "What about Mexico and Guatemala?"

result = qa_chain.invoke({"question": question})
print("Answer from LLM:")
print("================")
print(result["answer"])

source_docs = result["source_documents"]
print("================")
print(f"Number of used source document chunks: {len(source_docs)}")
Answer from LLM:
================
The United States has set up joint patrols with Mexico and Guatemala to catch more human traffickers. This collaboration is part of the efforts to address immigration issues and secure the borders in the region.
================
Number of used source document chunks: 5

详细检查链中使用的块。检查排名最高的块是否包含问题中提到的“墨西哥和危地马拉”的信息。

for doc in source_docs:
print("-" * 80)
print(doc.page_content)
print(doc.metadata)

在同一对话链上提出另一个问题。答案应与之前给出的答案相关。

question = "What about other countries?"

result = qa_chain.invoke({"question": question})
print("Answer from LLM:")
print("================")
print(result["answer"])
Answer from LLM:
================
Mexico and Guatemala are involved in joint patrols to catch human traffickers.

标准表 vs. 带有向量数据的“自定义”表

默认情况下,嵌入表创建时有3列:

  • 一列 VEC_TEXT,其中包含文档的文本
  • 一个列 VEC_META,其中包含文档的元数据
  • 一个列 VEC_VECTOR,其中包含文档文本的嵌入向量
# Access the vector DB with a new table
db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_NEW_TABLE"
)

# Delete already existing entries from the table
db.delete(filter={})

# Add a simple document with some metadata
docs = [
Document(
page_content="A simple document",
metadata={"start": 100, "end": 150, "doc_name": "simple.txt"},
)
]
db.add_documents(docs)
[]

显示表 "LANGCHAIN_DEMO_NEW_TABLE" 中的列

cur = connection.cursor()
cur.execute(
"SELECT COLUMN_NAME, DATA_TYPE_NAME FROM SYS.TABLE_COLUMNS WHERE SCHEMA_NAME = CURRENT_SCHEMA AND TABLE_NAME = 'LANGCHAIN_DEMO_NEW_TABLE'"
)
rows = cur.fetchall()
for row in rows:
print(row)
cur.close()
('VEC_META', 'NCLOB')
('VEC_TEXT', 'NCLOB')
('VEC_VECTOR', 'REAL_VECTOR')

显示插入文档在三列中的值

cur = connection.cursor()
cur.execute(
"SELECT VEC_TEXT, VEC_META, TO_NVARCHAR(VEC_VECTOR) FROM LANGCHAIN_DEMO_NEW_TABLE LIMIT 1"
)
rows = cur.fetchall()
print(rows[0][0]) # The text
print(rows[0][1]) # The metadata
print(rows[0][2]) # The vector
cur.close()

自定义表格必须至少有三列与标准表格的语义相匹配

  • 一个类型为NCLOBNVARCHAR的列,用于嵌入的文本/上下文
  • 一个类型为NCLOBNVARCHAR的列,用于存储元数据
  • 一个类型为REAL_VECTOR的列,用于嵌入向量

表格可以包含额外的列。当新文档插入表格时,这些额外的列必须允许NULL值。

# Create a new table "MY_OWN_TABLE_ADD" with three "standard" columns and one additional column
my_own_table_name = "MY_OWN_TABLE_ADD"
cur = connection.cursor()
cur.execute(
(
f"CREATE TABLE {my_own_table_name} ("
"SOME_OTHER_COLUMN NVARCHAR(42), "
"MY_TEXT NVARCHAR(2048), "
"MY_METADATA NVARCHAR(1024), "
"MY_VECTOR REAL_VECTOR )"
)
)

# Create a HanaDB instance with the own table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name=my_own_table_name,
content_column="MY_TEXT",
metadata_column="MY_METADATA",
vector_column="MY_VECTOR",
)

# Add a simple document with some metadata
docs = [
Document(
page_content="Some other text",
metadata={"start": 400, "end": 450, "doc_name": "other.txt"},
)
]
db.add_documents(docs)

# Check if data has been inserted into our own table
cur.execute(f"SELECT * FROM {my_own_table_name} LIMIT 1")
rows = cur.fetchall()
print(rows[0][0]) # Value of column "SOME_OTHER_DATA". Should be NULL/None
print(rows[0][1]) # The text
print(rows[0][2]) # The metadata
print(rows[0][3]) # The vector

cur.close()
None
Some other text
{"start": 400, "end": 450, "doc_name": "other.txt"}
<memory at 0x7f5edcb18d00>

添加另一个文档并在自定义表上执行相似性搜索。

docs = [
Document(
page_content="Some more text",
metadata={"start": 800, "end": 950, "doc_name": "more.txt"},
)
]
db.add_documents(docs)

query = "What's up?"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
Some other text
--------------------------------------------------------------------------------
Some more text

使用自定义列进行过滤性能优化

为了允许灵活的元数据值,默认情况下,所有元数据都以JSON格式存储在元数据列中。如果已知使用的某些元数据键和值类型,可以通过创建目标表并将键名作为列名,并通过specific_metadata_columns列表将它们传递给HanaDB构造函数,将它们存储在额外的列中。与这些值匹配的元数据键在插入时会被复制到特殊列中。对于specific_metadata_columns列表中的键,过滤器使用特殊列而不是元数据JSON列。

# Create a new table "PERFORMANT_CUSTOMTEXT_FILTER" with three "standard" columns and one additional column
my_own_table_name = "PERFORMANT_CUSTOMTEXT_FILTER"
cur = connection.cursor()
cur.execute(
(
f"CREATE TABLE {my_own_table_name} ("
"CUSTOMTEXT NVARCHAR(500), "
"MY_TEXT NVARCHAR(2048), "
"MY_METADATA NVARCHAR(1024), "
"MY_VECTOR REAL_VECTOR )"
)
)

# Create a HanaDB instance with the own table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name=my_own_table_name,
content_column="MY_TEXT",
metadata_column="MY_METADATA",
vector_column="MY_VECTOR",
specific_metadata_columns=["CUSTOMTEXT"],
)

# Add a simple document with some metadata
docs = [
Document(
page_content="Some other text",
metadata={
"start": 400,
"end": 450,
"doc_name": "other.txt",
"CUSTOMTEXT": "Filters on this value are very performant",
},
)
]
db.add_documents(docs)

# Check if data has been inserted into our own table
cur.execute(f"SELECT * FROM {my_own_table_name} LIMIT 1")
rows = cur.fetchall()
print(
rows[0][0]
) # Value of column "CUSTOMTEXT". Should be "Filters on this value are very performant"
print(rows[0][1]) # The text
print(
rows[0][2]
) # The metadata without the "CUSTOMTEXT" data, as this is extracted into a sperate column
print(rows[0][3]) # The vector

cur.close()
Filters on this value are very performant
Some other text
{"start": 400, "end": 450, "doc_name": "other.txt", "CUSTOMTEXT": "Filters on this value are very performant"}
<memory at 0x7f5edcb193c0>

特殊列对langchain接口的其余部分完全透明。一切如常工作,只是性能更高。

docs = [
Document(
page_content="Some more text",
metadata={
"start": 800,
"end": 950,
"doc_name": "more.txt",
"CUSTOMTEXT": "Another customtext value",
},
)
]
db.add_documents(docs)

advanced_filter = {"CUSTOMTEXT": {"$like": "%value%"}}
query = "What's up?"
docs = db.similarity_search(query, k=2, filter=advanced_filter)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
Some other text
--------------------------------------------------------------------------------
Some more text

这个页面有帮助吗?