模态框
本页面介绍了如何使用Modal生态系统来运行LangChain自定义LLMs。 它分为两部分:
- 模态安装和网络端点部署
- 使用部署的Web端点与
LLM
包装类。
安装与设置
- 使用
pip install modal
安装 - 运行
modal token new
定义你的模态函数和Webhooks
你必须包含一个提示。有一个严格的响应结构:
class Item(BaseModel):
prompt: str
@stub.function()
@modal.web_endpoint(method="POST")
def get_text(item: Item):
return {"prompt": run_gpt2.call(item.prompt)}
以下是使用GPT2模型的示例:
from pydantic import BaseModel
import modal
CACHE_PATH = "/root/model_cache"
class Item(BaseModel):
prompt: str
stub = modal.Stub(name="example-get-started-with-langchain")
def download_model():
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer.save_pretrained(CACHE_PATH)
model.save_pretrained(CACHE_PATH)
# Define a container image for the LLM function below, which
# downloads and stores the GPT-2 model.
image = modal.Image.debian_slim().pip_install(
"tokenizers", "transformers", "torch", "accelerate"
).run_function(download_model)
@stub.function(
gpu="any",
image=image,
retries=3,
)
def run_gpt2(text: str):
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained(CACHE_PATH)
model = GPT2LMHeadModel.from_pretrained(CACHE_PATH)
encoded_input = tokenizer(text, return_tensors='pt').input_ids
output = model.generate(encoded_input, max_length=50, do_sample=True)
return tokenizer.decode(output[0], skip_special_tokens=True)
@stub.function()
@modal.web_endpoint(method="POST")
def get_text(item: Item):
return {"prompt": run_gpt2.call(item.prompt)}
部署web端点
使用modal deploy
CLI命令将Web端点部署到Modal云。您的Web端点将在modal.run
域名下获得一个持久URL。
LLM 包装器围绕 Modal 网络端点
Modal
LLM 包装类,它将接受您部署的 Web 端点的 URL。
from langchain_community.llms import Modal
endpoint_url = "https://ecorp--custom-llm-endpoint.modal.run" # REPLACE ME with your deployed Modal web endpoint's URL
llm = Modal(endpoint_url=endpoint_url)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.run(question)
API Reference:Modal