Oracle AI 向量搜索:向量存储
Oracle AI 向量搜索专为人工智能(AI)工作负载设计,允许您基于语义而非关键字查询数据。 Oracle AI 向量搜索的最大优势之一是,可以在一个系统中将非结构化数据的语义搜索与业务数据的关系搜索结合起来。 这不仅功能强大,而且显著更有效,因为您不需要添加专门的向量数据库,消除了多个系统之间数据分散的痛点。
此外,您的向量可以从Oracle数据库的所有最强大功能中受益,例如以下内容:
- 分区支持
- 真实应用集群的可扩展性
- Exadata 智能扫描
- 跨地理分布的数据库进行分片处理
- 事务
- 并行SQL
- 灾难恢复
- 安全
- Oracle 机器学习
- Oracle 图数据库
- Oracle 空间与图形
- Oracle 区块链
- JSON
如果您刚开始使用Oracle数据库,可以考虑探索免费的Oracle 23 AI,它为您提供了一个很好的入门指南,帮助您设置数据库环境。在使用数据库时,通常建议避免默认使用系统用户;相反,您可以创建自己的用户以增强安全性和定制性。有关用户创建的详细步骤,请参阅我们的端到端指南,该指南还展示了如何在Oracle中设置用户。此外,了解用户权限对于有效管理数据库安全至关重要。您可以在官方的Oracle指南中了解更多关于管理用户帐户和安全的信息。
使用Langchain与Oracle AI向量搜索的先决条件
你需要安装 langchain-community
使用 pip install -qU langchain-community
来使用这个集成
请安装Oracle Python客户端驱动程序以使用Langchain与Oracle AI向量搜索。
# pip install oracledb
连接到Oracle AI向量搜索
以下示例代码将展示如何连接到Oracle数据库。默认情况下,python-oracledb以“Thin”模式运行,该模式直接连接到Oracle数据库。此模式不需要Oracle客户端库。然而,当python-oracledb使用它们时,一些额外的功能是可用的。当使用Oracle客户端库时,python-oracledb被称为处于“Thick”模式。两种模式都具有支持Python数据库API v2.0规范的全面功能。请参阅以下指南,该指南讨论了每种模式下支持的功能。如果您无法使用thin模式,您可能希望切换到thick模式。
import oracledb
username = "username"
password = "password"
dsn = "ipaddress:port/orclpdb1"
try:
connection = oracledb.connect(user=username, password=password, dsn=dsn)
print("Connection successful!")
except Exception as e:
print("Connection failed!")
导入使用Oracle AI向量搜索所需的依赖项
from langchain_community.vectorstores import oraclevs
from langchain_community.vectorstores.oraclevs import OracleVS
from langchain_community.vectorstores.utils import DistanceStrategy
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
加载文档
# Define a list of documents (The examples below are 5 random documents from Oracle Concepts Manual )
documents_json_list = [
{
"id": "cncpt_15.5.3.2.2_P4",
"text": "If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.",
"link": "https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/logical-storage-structures.html#GUID-5387D7B2-C0CA-4C1E-811B-C7EB9B636442",
},
{
"id": "cncpt_15.5.5_P1",
"text": "A tablespace can be online (accessible) or offline (not accessible) whenever the database is open.\nA tablespace is usually online so that its data is available to users. The SYSTEM tablespace and temporary tablespaces cannot be taken offline.",
"link": "https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/logical-storage-structures.html#GUID-D02B2220-E6F5-40D9-AFB5-BC69BCEF6CD4",
},
{
"id": "cncpt_22.3.4.3.1_P2",
"text": "The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table.\nSometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.",
"link": "https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/concepts-for-database-developers.html#GUID-3C50EAB8-FC39-4BB3-B680-4EACCE49E866",
},
{
"id": "cncpt_22.3.4.3.1_P3",
"text": "The LOB segment stores data in pieces called chunks. A chunk is a logically contiguous set of data blocks and is the smallest unit of allocation for a LOB. A row in the table stores a pointer called a LOB locator, which points to the LOB index. When the table is queried, the database uses the LOB index to quickly locate the LOB chunks.",
"link": "https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/concepts-for-database-developers.html#GUID-3C50EAB8-FC39-4BB3-B680-4EACCE49E866",
},
]
# Create Langchain Documents
documents_langchain = []
for doc in documents_json_list:
metadata = {"id": doc["id"], "link": doc["link"]}
doc_langchain = Document(page_content=doc["text"], metadata=metadata)
documents_langchain.append(doc_langchain)
使用AI向量搜索创建具有不同距离度量的向量存储
首先,我们将创建三个向量存储,每个存储使用不同的距离函数。由于我们尚未在其中创建索引,它们目前只会创建表格。稍后我们将使用这些向量存储来创建HNSW索引。要了解更多关于Oracle AI向量搜索支持的不同类型索引的信息,请参考以下指南。
您可以手动连接到Oracle数据库,并会看到三个表: Documents_DOT、Documents_COSINE和Documents_EUCLIDEAN。
然后我们将创建三个额外的表 Documents_DOT_IVF、Documents_COSINE_IVF 和 Documents_EUCLIDEAN_IVF,这些表将用于在表上创建 IVF 索引,而不是 HNSW 索引。
# Ingest documents into Oracle Vector Store using different distance strategies
# When using our API calls, start by initializing your vector store with a subset of your documents
# through from_documents(), then incrementally add more documents using add_texts().
# This approach prevents system overload and ensures efficient document processing.
model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store_dot = OracleVS.from_documents(
documents_langchain,
model,
client=connection,
table_name="Documents_DOT",
distance_strategy=DistanceStrategy.DOT_PRODUCT,
)
vector_store_max = OracleVS.from_documents(
documents_langchain,
model,
client=connection,
table_name="Documents_COSINE",
distance_strategy=DistanceStrategy.COSINE,
)
vector_store_euclidean = OracleVS.from_documents(
documents_langchain,
model,
client=connection,
table_name="Documents_EUCLIDEAN",
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,
)
# Ingest documents into Oracle Vector Store using different distance strategies
vector_store_dot_ivf = OracleVS.from_documents(
documents_langchain,
model,
client=connection,
table_name="Documents_DOT_IVF",
distance_strategy=DistanceStrategy.DOT_PRODUCT,
)
vector_store_max_ivf = OracleVS.from_documents(
documents_langchain,
model,
client=connection,
table_name="Documents_COSINE_IVF",
distance_strategy=DistanceStrategy.COSINE,
)
vector_store_euclidean_ivf = OracleVS.from_documents(
documents_langchain,
model,
client=connection,
table_name="Documents_EUCLIDEAN_IVF",
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,
)
演示文本的添加和删除操作,以及基本的相似性搜索
def manage_texts(vector_stores):
"""
Adds texts to each vector store, demonstrates error handling for duplicate additions,
and performs deletion of texts. Showcases similarity searches and index creation for each vector store.
Args:
- vector_stores (list): A list of OracleVS instances.
"""
texts = ["Rohan", "Shailendra"]
metadata = [
{"id": "100", "link": "Document Example Test 1"},
{"id": "101", "link": "Document Example Test 2"},
]
for i, vs in enumerate(vector_stores, start=1):
# Adding texts
try:
vs.add_texts(texts, metadata)
print(f"\n\n\nAdd texts complete for vector store {i}\n\n\n")
except Exception as ex:
print(f"\n\n\nExpected error on duplicate add for vector store {i}\n\n\n")
# Deleting texts using the value of 'id'
vs.delete([metadata[0]["id"]])
print(f"\n\n\nDelete texts complete for vector store {i}\n\n\n")
# Similarity search
results = vs.similarity_search("How are LOBS stored in Oracle Database", 2)
print(f"\n\n\nSimilarity search results for vector store {i}: {results}\n\n\n")
vector_store_list = [
vector_store_dot,
vector_store_max,
vector_store_euclidean,
vector_store_dot_ivf,
vector_store_max_ivf,
vector_store_euclidean_ivf,
]
manage_texts(vector_store_list)
展示为每种距离策略创建具有特定参数的索引
def create_search_indices(connection):
"""
Creates search indices for the vector stores, each with specific parameters tailored to their distance strategy.
"""
# Index for DOT_PRODUCT strategy
# Notice we are creating a HNSW index with default parameters
# This will default to creating a HNSW index with 8 Parallel Workers and use the Default Accuracy used by Oracle AI Vector Search
oraclevs.create_index(
connection,
vector_store_dot,
params={"idx_name": "hnsw_idx1", "idx_type": "HNSW"},
)
# Index for COSINE strategy with specific parameters
# Notice we are creating a HNSW index with parallel 16 and Target Accuracy Specification as 97 percent
oraclevs.create_index(
connection,
vector_store_max,
params={
"idx_name": "hnsw_idx2",
"idx_type": "HNSW",
"accuracy": 97,
"parallel": 16,
},
)
# Index for EUCLIDEAN_DISTANCE strategy with specific parameters
# Notice we are creating a HNSW index by specifying Power User Parameters which are neighbors = 64 and efConstruction = 100
oraclevs.create_index(
connection,
vector_store_euclidean,
params={
"idx_name": "hnsw_idx3",
"idx_type": "HNSW",
"neighbors": 64,
"efConstruction": 100,
},
)
# Index for DOT_PRODUCT strategy with specific parameters
# Notice we are creating an IVF index with default parameters
# This will default to creating an IVF index with 8 Parallel Workers and use the Default Accuracy used by Oracle AI Vector Search
oraclevs.create_index(
connection,
vector_store_dot_ivf,
params={
"idx_name": "ivf_idx1",
"idx_type": "IVF",
},
)
# Index for COSINE strategy with specific parameters
# Notice we are creating an IVF index with parallel 32 and Target Accuracy Specification as 90 percent
oraclevs.create_index(
connection,
vector_store_max_ivf,
params={
"idx_name": "ivf_idx2",
"idx_type": "IVF",
"accuracy": 90,
"parallel": 32,
},
)
# Index for EUCLIDEAN_DISTANCE strategy with specific parameters
# Notice we are creating an IVF index by specifying Power User Parameters which is neighbor_part = 64
oraclevs.create_index(
connection,
vector_store_euclidean_ivf,
params={"idx_name": "ivf_idx3", "idx_type": "IVF", "neighbor_part": 64},
)
print("Index creation complete.")
create_search_indices(connection)
在所有六个向量存储上展示高级搜索,包括有和没有属性过滤的情况 – 使用过滤时,我们只选择文档ID 101,其他都不选
# Conduct advanced searches after creating the indices
def conduct_advanced_searches(vector_stores):
query = "How are LOBS stored in Oracle Database"
# Constructing a filter for direct comparison against document metadata
# This filter aims to include documents whose metadata 'id' is exactly '2'
filter_criteria = {"id": ["101"]} # Direct comparison filter
for i, vs in enumerate(vector_stores, start=1):
print(f"\n--- Vector Store {i} Advanced Searches ---")
# Similarity search without a filter
print("\nSimilarity search results without filter:")
print(vs.similarity_search(query, 2))
# Similarity search with a filter
print("\nSimilarity search results with filter:")
print(vs.similarity_search(query, 2, filter=filter_criteria))
# Similarity search with relevance score
print("\nSimilarity search with relevance score:")
print(vs.similarity_search_with_score(query, 2))
# Similarity search with relevance score with filter
print("\nSimilarity search with relevance score with filter:")
print(vs.similarity_search_with_score(query, 2, filter=filter_criteria))
# Max marginal relevance search
print("\nMax marginal relevance search results:")
print(vs.max_marginal_relevance_search(query, 2, fetch_k=20, lambda_mult=0.5))
# Max marginal relevance search with filter
print("\nMax marginal relevance search results with filter:")
print(
vs.max_marginal_relevance_search(
query, 2, fetch_k=20, lambda_mult=0.5, filter=filter_criteria
)
)
conduct_advanced_searches(vector_store_list)
端到端演示
请参考我们的完整演示指南Oracle AI Vector Search End-to-End Demo Guide,借助Oracle AI Vector Search构建端到端的RAG管道。