ChatHuggingFace
这将帮助您开始使用langchain_huggingface
聊天模型。有关所有ChatHuggingFace
功能和配置的详细文档,请访问API参考。有关Hugging Face支持的模型列表,请查看此页面。
概述
集成详情
集成详情
类 | 包 | 本地 | 可序列化 | JS支持 | 包下载 | 包最新 |
---|---|---|---|---|---|---|
ChatHuggingFace | langchain-huggingface | ✅ | 测试版 | ❌ |
模型特性
工具调用 | 结构化输出 | JSON模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
设置
要访问Hugging Face模型,您需要创建一个Hugging Face账户,获取一个API密钥,并安装langchain-huggingface
集成包。
凭证
生成一个Hugging Face 访问令牌并将其存储为环境变量:HUGGINGFACEHUB_API_TOKEN
。
import getpass
import os
if not os.getenv("HUGGINGFACEHUB_API_TOKEN"):
os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass("Enter your token: ")
安装
类 | 包 | 本地 | 可序列化 | JS支持 | 包下载 | 包最新 |
---|---|---|---|---|---|---|
ChatHuggingFace | langchain_huggingface | ✅ | ❌ | ❌ |
模型特性
工具调用 | 结构化输出 | JSON模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
设置
要访问langchain_huggingface
模型,您需要创建一个Hugging Face
账户,获取一个API密钥,并安装langchain_huggingface
集成包。
凭证
你需要将Hugging Face 访问令牌保存为环境变量:HUGGINGFACEHUB_API_TOKEN
。
import getpass
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass(
"Enter your Hugging Face API key: "
)
%pip install --upgrade --quiet langchain-huggingface text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2 bitsandbytes accelerate
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m24.0[0m[39;49m -> [0m[32;49m24.1.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
Note: you may need to restart the kernel to use updated packages.
实例化
你可以通过两种不同的方式实例化一个ChatHuggingFace
模型,要么从HuggingFaceEndpoint
,要么从HuggingFacePipeline
。
HuggingFaceEndpoint
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
)
chat_model = ChatHuggingFace(llm=llm)
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /Users/isaachershenson/.cache/huggingface/token
Login successful
HuggingFacePipeline
from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline
llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
),
)
chat_model = ChatHuggingFace(llm=llm)
config.json: 0%| | 0.00/638 [00:00<?, ?B/s]
model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]
Downloading shards: 0%| | 0/8 [00:00<?, ?it/s]
model-00001-of-00008.safetensors: 0%| | 0.00/1.89G [00:00<?, ?B/s]
model-00002-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00003-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00004-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00005-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00006-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00007-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00008-of-00008.safetensors: 0%| | 0.00/816M [00:00<?, ?B/s]
Loading checkpoint shards: 0%| | 0/8 [00:00<?, ?it/s]
generation_config.json: 0%| | 0.00/111 [00:00<?, ?B/s]
使用量化进行实例化
要运行量化版本的模型,您可以指定一个bitsandbytes
量化配置,如下所示:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True,
)
并将其作为model_kwargs
的一部分传递给HuggingFacePipeline
:
llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
return_full_text=False,
),
model_kwargs={"quantization_config": quantization_config},
)
chat_model = ChatHuggingFace(llm=llm)
调用
from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
messages = [
SystemMessage(content="You're a helpful assistant"),
HumanMessage(
content="What happens when an unstoppable force meets an immovable object?"
),
]
ai_msg = chat_model.invoke(messages)
print(ai_msg.content)
According to the popular phrase and hypothetical scenario, when an unstoppable force meets an immovable object, a paradoxical situation arises as both forces are seemingly contradictory. On one hand, an unstoppable force is an entity that cannot be stopped or prevented from moving forward, while on the other hand, an immovable object is something that cannot be moved or displaced from its position.
In this scenario, it is un
API参考
有关所有ChatHuggingFace
功能和配置的详细文档,请访问API参考:https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html
API 参考
有关所有ChatHuggingFace功能和配置的详细文档,请访问API参考:https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html