Skip to main content
Open In ColabOpen on GitHub

PredictionGuardEmbeddings

Prediction Guard 是一个安全、可扩展的生成式人工智能平台,能够保护敏感数据,防止常见的人工智能故障,并在经济实惠的硬件上运行。

概述

集成详情

此集成展示了如何将Prediction Guard嵌入集成与Langchain一起使用。此集成支持文本和图像,可以单独使用,也可以成对匹配使用。

设置

要访问Prediction Guard模型,请联系我们这里获取Prediction Guard API密钥并开始使用。

凭证

一旦你有了一个密钥,你可以通过以下方式设置它

import os

os.environ["PREDICTIONGUARD_API_KEY"] = "<Prediction Guard API Key"

安装

%pip install --upgrade --quiet langchain-predictionguard

实例化

首先,安装Prediction Guard和LangChain包。然后,设置所需的环境变量并设置包导入。

from langchain_predictionguard import PredictionGuardEmbeddings
embeddings = PredictionGuardEmbeddings(model="bridgetower-large-itm-mlm-itc")

Prediction Guard 嵌入生成支持文本和图像。此集成包括跨各种函数的支持。

索引与检索

# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore

text = "LangChain is the framework for building context-aware reasoning applications."

vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)

# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()

# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")

# Show the retrieved document's content
retrieved_documents[0].page_content
API Reference:InMemoryVectorStore
'LangChain is the framework for building context-aware reasoning applications.'

直接使用

向量存储和检索器实现正在调用embeddings.embed_documents(...)embeddings.embed_query(...)来从from_texts和检索invoke操作中使用的文本创建嵌入。

这些方法可以通过以下命令直接调用。

嵌入单个文本

# Embedding a single string
text = "This is an embedding example."
single_vector = embeddings.embed_query(text)

single_vector[:5]
[0.01456777285784483,
-0.08131945133209229,
-0.013045587576925755,
-0.09488929063081741,
-0.003087474964559078]

嵌入多个文本

# Embedding multiple strings
docs = [
"This is an embedding example.",
"This is another embedding example.",
]

two_vectors = embeddings.embed_documents(docs)

for vector in two_vectors:
print(vector[:5])
[0.01456777285784483, -0.08131945133209229, -0.013045587576925755, -0.09488929063081741, -0.003087474964559078]
[-0.0015021917643025517, -0.08883760124444962, -0.0025286630261689425, -0.1052245944738388, 0.014225339516997337]

嵌入单个图像

# Embedding a single image. These functions accept image URLs, image files, data URIs, and base64 encoded strings.
image = [
"https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
]
single_vector = embeddings.embed_images(image)

print(single_vector[0][:5])
[0.0911610797047615, -0.034427884966135025, 0.007927080616354942, -0.03500846028327942, 0.022317267954349518]

嵌入多张图片

# Embedding multiple images
images = [
"https://fastly.picsum.photos/id/866/200/300.jpg?hmac=rcadCENKh4rD6MAp6V_ma-AyWv641M4iiOpe1RyFHeI",
"https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
]

two_vectors = embeddings.embed_images(images)

for vector in two_vectors:
print(vector[:5])
[0.1593627631664276, -0.03636132553219795, -0.013229663483798504, -0.08789524435997009, 0.062290553003549576]
[0.0911610797047615, -0.034427884966135025, 0.007927080616354942, -0.03500846028327942, 0.022317267954349518]

嵌入单文本-图像对

# Embedding a single text-image pair
inputs = [
{
"text": "This is an embedding example.",
"image": "https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
},
]
single_vector = embeddings.embed_image_text(inputs)

print(single_vector[0][:5])
[0.0363212488591671, -0.10172265768051147, -0.014760786667466164, -0.046511903405189514, 0.03860781341791153]

嵌入多个文本-图像对

# Embedding multiple text-image pairs
inputs = [
{
"text": "This is an embedding example.",
"image": "https://fastly.picsum.photos/id/866/200/300.jpg?hmac=rcadCENKh4rD6MAp6V_ma-AyWv641M4iiOpe1RyFHeI",
},
{
"text": "This is another embedding example.",
"image": "https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
},
]
two_vectors = embeddings.embed_image_text(inputs)

for vector in two_vectors:
print(vector[:5])
[0.11867266893386841, -0.05898813530802727, -0.026179173961281776, -0.10747235268354416, 0.07684746384620667]
[0.026654226705431938, -0.10080841928720474, -0.012732953764498234, -0.04365091398358345, 0.036743905395269394]

API 参考

有关所有PredictionGuardEmbeddings功能和配置的详细文档,请查看API参考:https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.predictionguard.PredictionGuardEmbeddings.html


这个页面有帮助吗?