Aim
Aim 使得可视化和调试 LangChain 执行变得非常简单。Aim 跟踪 LLMs 和工具的输入和输出,以及代理的操作。
使用 Aim,您可以轻松调试和检查单个执行:
此外,您可以选择并排比较多个执行:
Aim是完全开源的,了解更多关于Aim在GitHub上的信息。
让我们继续前进,看看如何启用和配置Aim回调。
使用Aim跟踪LangChain执行
在本笔记本中,我们将探索三种使用场景。首先,我们将安装必要的包并导入某些模块。随后,我们将配置两个环境变量,这些变量可以在Python脚本中或通过终端设置。
%pip install --upgrade --quiet aim
%pip install --upgrade --quiet langchain
%pip install --upgrade --quiet langchain-openai
%pip install --upgrade --quiet google-search-results
import os
from datetime import datetime
from langchain_community.callbacks import AimCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI
我们的示例使用GPT模型作为LLM,OpenAI为此提供了一个API。您可以从以下链接获取密钥:https://platform.openai.com/account/api-keys。
我们将使用SerpApi从Google检索搜索结果。要获取SerpApi密钥,请访问https://serpapi.com/manage-api-key。
os.environ["OPENAI_API_KEY"] = "..."
os.environ["SERPAPI_API_KEY"] = "..."
AimCallbackHandler
的事件方法接受 LangChain 模块或代理作为输入,并至少记录提示和生成的结果,以及 LangChain 模块的序列化版本,到指定的 Aim 运行中。
session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")
aim_callback = AimCallbackHandler(
repo=".",
experiment_name="scenario 1: OpenAI LLM",
)
callbacks = [StdOutCallbackHandler(), aim_callback]
llm = OpenAI(temperature=0, callbacks=callbacks)
flush_tracker
函数用于在 Aim 上记录 LangChain 资产。默认情况下,会话会被重置而不是直接终止。
场景 1
In the first scenario, we will use OpenAI LLM.# scenario 1 - LLM
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
aim_callback.flush_tracker(
langchain_asset=llm,
experiment_name="scenario 2: Chain with multiple SubChains on multiple generations",
)
场景 2
Scenario two involves chaining with multiple SubChains across multiple generations.from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
API Reference:LLMChain | PromptTemplate
# scenario 2 - Chain
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [
{
"title": "documentary about good video games that push the boundary of game design"
},
{"title": "the phenomenon behind the remarkable speed of cheetahs"},
{"title": "the best in class mlops tooling"},
]
synopsis_chain.apply(test_prompts)
aim_callback.flush_tracker(
langchain_asset=synopsis_chain, experiment_name="scenario 3: Agent with Tools"
)
场景 3
The third scenario involves an agent with tools.from langchain.agents import AgentType, initialize_agent, load_tools
# scenario 3 - Agent with Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=callbacks,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True)
[1m> Entering new AgentExecutor chain...[0m
[32;1m[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.
Action: Search
Action Input: "Leo DiCaprio girlfriend"[0m
Observation: [36;1m[1;3mLeonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ...[0m
Thought:[32;1m[1;3m I need to find out Camila Morrone's age
Action: Search
Action Input: "Camila Morrone age"[0m
Observation: [36;1m[1;3m25 years[0m
Thought:[32;1m[1;3m I need to calculate 25 raised to the 0.43 power
Action: Calculator
Action Input: 25^0.43[0m
Observation: [33;1m[1;3mAnswer: 3.991298452658078
[0m
Thought:[32;1m[1;3m I now know the final answer
Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078.[0m
[1m> Finished chain.[0m