JinaChat
本笔记本介绍了如何开始使用JinaChat聊天模型。
from langchain_community.chat_models import JinaChat
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
API Reference:JinaChat | HumanMessage | SystemMessage | ChatPromptTemplate | HumanMessagePromptTemplate | SystemMessagePromptTemplate
chat = JinaChat(temperature=0)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French. I love programming."
),
]
chat(messages)
AIMessage(content="J'aime programmer.", additional_kwargs={}, example=False)
你可以通过使用MessagePromptTemplate
来利用模板功能。你可以从一个或多个MessagePromptTemplates
构建一个ChatPromptTemplate
。你可以使用ChatPromptTemplate
的format_prompt
——这将返回一个PromptValue
,你可以将其转换为字符串或消息对象,具体取决于你是否希望将格式化值用作llm或聊天模型的输入。
为了方便起见,模板上公开了一个from_template
方法。如果您要使用此模板,它将如下所示:
template = (
"You are a helpful assistant that translates {input_language} to {output_language}."
)
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages(
[system_message_prompt, human_message_prompt]
)
# get a chat completion from the formatted messages
chat(
chat_prompt.format_prompt(
input_language="English", output_language="French", text="I love programming."
).to_messages()
)
AIMessage(content="J'aime programmer.", additional_kwargs={}, example=False)