ChatSamba工作室
这将帮助您开始使用SambaStudio的聊天模型。有关ChatStudio所有功能和配置的详细文档,请访问API参考。
SambaNova's SambaStudio SambaStudio 是一个丰富的、基于图形用户界面的平台,提供了在 SambaNova DataScale 系统中训练、部署和管理模型的功能。
概述
集成详情
类 | 包 | 本地 | 可序列化 | JS支持 | 包下载 | 包最新 |
---|---|---|---|---|---|---|
ChatSambaStudio | langchain-community | ❌ | ❌ | ❌ |
模型特性
工具调用 | 结构化输出 | JSON模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |
设置
要访问ChatSambaStudio模型,您需要在SambaStudio平台上部署一个端点,安装langchain_community
集成包,并安装SSEClient
包。
pip install langchain-community
pip install sseclient-py
凭证
从您部署的SambaStudio端点获取URL和API密钥,并将它们添加到您的环境变量中:
export SAMBASTUDIO_URL="your-api-key-here"
export SAMBASTUDIO_API_KEY="your-api-key-here"
import getpass
import os
if not os.getenv("SAMBASTUDIO_URL"):
os.environ["SAMBASTUDIO_URL"] = getpass.getpass("Enter your SambaStudio URL: ")
if not os.getenv("SAMBASTUDIO_API_KEY"):
os.environ["SAMBASTUDIO_API_KEY"] = getpass.getpass(
"Enter your SambaStudio API key: "
)
如果你想获取模型调用的自动追踪,你也可以通过取消注释以下内容来设置你的LangSmith API密钥:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
安装
LangChain 的 SambaStudio 集成位于 langchain_community
包中:
%pip install -qU langchain-community
%pip install -qu sseclient-py
实例化
现在我们可以实例化我们的模型对象并生成聊天完成:
from langchain_community.chat_models.sambanova import ChatSambaStudio
llm = ChatSambaStudio(
model="Meta-Llama-3-70B-Instruct-4096", # set if using a Bundle endpoint
max_tokens=1024,
temperature=0.7,
top_k=1,
top_p=0.01,
do_sample=True,
process_prompt="True", # set if using a Bundle endpoint
)
API Reference:ChatSambaStudio
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': "J'adore la programmation.", 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant that translates English to French. Translate the user sentence.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nI love programming.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n', 'stop_reason': 'end_of_text', 'tokens': ['J', "'", 'ad', 'ore', ' la', ' programm', 'ation', '.'], 'total_tokens_count': 43}, 'params': {}, 'status': None}, id='item0')
print(ai_msg.content)
J'adore la programmation.
链式调用
我们可以链式我们的模型与一个提示模板,如下所示:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API Reference:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren.', response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': 'Ich liebe das Programmieren.', 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant that translates English to German.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nI love programming.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n', 'stop_reason': 'end_of_text', 'tokens': ['Ich', ' liebe', ' das', ' Programm', 'ieren', '.'], 'total_tokens_count': 36}, 'params': {}, 'status': None}, id='item0')
流处理
system = "You are a helpful assistant with pirate accent."
human = "I want to learn more about this animal: {animal}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
chain = prompt | llm
for chunk in chain.stream({"animal": "owl"}):
print(chunk.content, end="", flush=True)
Arrr, ye landlubber! Ye be wantin' to learn about owls, eh? Well, matey, settle yerself down with a pint o' grog and listen close, for I be tellin' ye about these fascinatin' creatures o' the night!
Owls be birds, but not just any birds, me hearty! They be nocturnal, meanin' they do their huntin' at night, when the rest o' the world be sleepin'. And they be experts at it, too! Their big, round eyes be designed for seein' in the dark, with a special reflective layer called the tapetum lucidum that helps 'em spot prey in the shadows. It's like havin' a built-in lantern, savvy?
But that be not all, me matey! Owls also have acute hearin', which helps 'em pinpoint the slightest sounds in the dark. And their ears be asymmetrical, meanin' one ear be higher than the other, which gives 'em better depth perception. It's like havin' a built-in sonar system, arrr!
Now, ye might be wonderin' how owls fly so silently, like ghosts in the night. Well, it be because o' their special feathers, me hearty! They have soft, fringed feathers on their wings that help reduce noise and turbulence, makin' 'em the sneakiest flyers on the seven seas... er, skies!
Owls come in all shapes and sizes, from the tiny elf owl to the great grey owl, which be one o' the largest owl species in the world. And they be found on every continent, except Antarctica, o' course. They be solitary creatures, but some species be known to form long-term monogamous relationships, like the barn owl and its mate.
So, there ye have it, me hearty! Owls be amazin' creatures, with their clever adaptations and stealthy ways. Now, go forth and spread the word about these magnificent birds o' the night! And remember, if ye ever encounter an owl in the wild, be sure to show respect and keep a weather eye open, or ye might just find yerself on the receivin' end o' a silent, flyin' tackle! Arrr!
异步
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"what is the capital of {country}?",
)
]
)
chain = prompt | llm
await chain.ainvoke({"country": "France"})
AIMessage(content='The capital of France is Paris.', response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': 'The capital of France is Paris.', 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>user<|end_header_id|>\n\nwhat is the capital of France?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n', 'stop_reason': 'end_of_text', 'tokens': ['The', ' capital', ' of', ' France', ' is', ' Paris', '.'], 'total_tokens_count': 24}, 'params': {}, 'status': None}, id='item0')
异步流
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"in less than {num_words} words explain me {topic} ",
)
]
)
chain = prompt | llm
async for chunk in chain.astream({"num_words": 30, "topic": "quantum computers"}):
print(chunk.content, end="", flush=True)
Quantum computers use quantum bits (qubits) to process multiple possibilities simultaneously, exponentially faster than classical computers, enabling breakthroughs in fields like cryptography, optimization, and simulation.
工具调用
from datetime import datetime
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
from langchain_core.tools import tool
@tool
def get_time(kind: str = "both") -> str:
"""Returns current date, current time or both.
Args:
kind: date, time or both
"""
if kind == "date":
date = datetime.now().strftime("%m/%d/%Y")
return f"Current date: {date}"
elif kind == "time":
time = datetime.now().strftime("%H:%M:%S")
return f"Current time: {time}"
else:
date = datetime.now().strftime("%m/%d/%Y")
time = datetime.now().strftime("%H:%M:%S")
return f"Current date: {date}, Current time: {time}"
tools = [get_time]
def invoke_tools(tool_calls, messages):
available_functions = {tool.name: tool for tool in tools}
for tool_call in tool_calls:
selected_tool = available_functions[tool_call["name"]]
tool_output = selected_tool.invoke(tool_call["args"])
print(f"Tool output: {tool_output}")
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
return messages
llm_with_tools = llm.bind_tools(tools=tools)
messages = [
HumanMessage(
content="I need to schedule a meeting for two weeks from today. Can you tell me the exact date of the meeting?"
)
]
response = llm_with_tools.invoke(messages)
while len(response.tool_calls) > 0:
print(f"Intermediate model response: {response.tool_calls}")
messages.append(response)
messages = invoke_tools(response.tool_calls, messages)
response = llm_with_tools.invoke(messages)
print(f"final response: {response.content}")
Intermediate model response: [{'name': 'get_time', 'args': {'kind': 'date'}, 'id': 'call_4092d5dd21cd4eb494', 'type': 'tool_call'}]
Tool output: Current date: 11/07/2024
final response: The meeting will be exactly two weeks from today, which would be 25/07/2024.
结构化输出
from pydantic import BaseModel, Field
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
Joke(setup='Why did the cat join a band?', punchline='Because it wanted to be the purr-cussionist!')
API参考
有关所有ChatSambaStudio功能和配置的详细文档,请前往API参考:https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html