Skip to main content
Open In ColabOpen on GitHub

ElasticsearchRetriever

Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎。它提供了一个分布式的、支持多租户的全文搜索引擎,具有 HTTP 网络接口和无模式的 JSON 文档。它支持关键词搜索、向量搜索、混合搜索和复杂过滤。

ElasticsearchRetriever 是一个通用包装器,通过 Query DSL 实现对所有 Elasticsearch 功能的灵活访问。对于大多数用例,其他类(如 ElasticsearchStoreElasticsearchEmbeddings 等)应该足够,但如果它们不能满足需求,你可以使用 ElasticsearchRetriever

本指南将帮助您开始使用Elasticsearch retriever。有关所有ElasticsearchRetriever功能和配置的详细文档,请访问API参考

集成详情

检索器自托管云服务
ElasticsearchRetrieverlangchain_elasticsearch

设置

设置Elasticsearch实例主要有两种方法:

  • Elastic Cloud: Elastic Cloud 是一个托管的Elasticsearch服务。注册一个免费试用。 要连接到不需要登录凭据的Elasticsearch实例(启动启用了安全的docker实例),将Elasticsearch URL和索引名称以及嵌入对象传递给构造函数。

  • 本地安装 Elasticsearch:通过在本地运行 Elasticsearch 来开始使用。最简单的方法是使用官方的 Elasticsearch Docker 镜像。有关更多信息,请参阅 Elasticsearch Docker 文档

如果你想从单个查询中获取自动追踪,你也可以通过取消注释以下内容来设置你的 LangSmith API 密钥:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装

这个检索器位于langchain-elasticsearch包中。为了演示目的,我们还将安装langchain-community来生成文本嵌入

%pip install -qU langchain-community langchain-elasticsearch
from typing import Any, Dict, Iterable

from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
from langchain_community.embeddings import DeterministicFakeEmbedding
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_elasticsearch import ElasticsearchRetriever

配置

在这里我们定义了与Elasticsearch的连接。在这个例子中,我们使用了一个本地运行的实例。或者,您可以在Elastic Cloud上创建一个账户并开始免费试用

es_url = "http://localhost:9200"
es_client = Elasticsearch(hosts=[es_url])
es_client.info()

对于向量搜索,我们将仅使用随机嵌入进行说明。在实际使用场景中,请选择可用的LangChain 嵌入类之一。

embeddings = DeterministicFakeEmbedding(size=3)

定义示例数据

index_name = "test-langchain-retriever"
text_field = "text"
dense_vector_field = "fake_embedding"
num_characters_field = "num_characters"
texts = [
"foo",
"bar",
"world",
"hello world",
"hello",
"foo bar",
"bla bla foo",
]

索引数据

通常,用户在使用ElasticsearchRetriever时,他们已经有一个Elasticsearch索引中的数据。这里我们索引一些示例文本文档。如果你使用ElasticsearchStore.from_documents创建了一个索引,那也是可以的。

def create_index(
es_client: Elasticsearch,
index_name: str,
text_field: str,
dense_vector_field: str,
num_characters_field: str,
):
es_client.indices.create(
index=index_name,
mappings={
"properties": {
text_field: {"type": "text"},
dense_vector_field: {"type": "dense_vector"},
num_characters_field: {"type": "integer"},
}
},
)


def index_data(
es_client: Elasticsearch,
index_name: str,
text_field: str,
dense_vector_field: str,
embeddings: Embeddings,
texts: Iterable[str],
refresh: bool = True,
) -> None:
create_index(
es_client, index_name, text_field, dense_vector_field, num_characters_field
)

vectors = embeddings.embed_documents(list(texts))
requests = [
{
"_op_type": "index",
"_index": index_name,
"_id": i,
text_field: text,
dense_vector_field: vector,
num_characters_field: len(text),
}
for i, (text, vector) in enumerate(zip(texts, vectors))
]

bulk(es_client, requests)

if refresh:
es_client.indices.refresh(index=index_name)

return len(requests)
index_data(es_client, index_name, text_field, dense_vector_field, embeddings, texts)
7

实例化

在这个例子中使用假嵌入进行密集向量检索。

def vector_query(search_query: str) -> Dict:
vector = embeddings.embed_query(search_query) # same embeddings as for indexing
return {
"knn": {
"field": dense_vector_field,
"query_vector": vector,
"k": 5,
"num_candidates": 10,
}
}


vector_retriever = ElasticsearchRetriever.from_es_params(
index_name=index_name,
body_func=vector_query,
content_field=text_field,
url=es_url,
)

vector_retriever.invoke("foo")
[Document(page_content='foo', metadata={'_index': 'test-langchain-index', '_id': '0', '_score': 1.0, '_source': {'fake_embedding': [-2.336764233933763, 0.27510289545940503, -0.7957597268194339], 'num_characters': 3}}),
Document(page_content='world', metadata={'_index': 'test-langchain-index', '_id': '2', '_score': 0.6770179, '_source': {'fake_embedding': [-0.7041151202179595, -1.4652961969276497, -0.25786766898672847], 'num_characters': 5}}),
Document(page_content='hello world', metadata={'_index': 'test-langchain-index', '_id': '3', '_score': 0.4816144, '_source': {'fake_embedding': [0.42728413221815387, -1.1889908285425348, -1.445433230084671], 'num_characters': 11}}),
Document(page_content='hello', metadata={'_index': 'test-langchain-index', '_id': '4', '_score': 0.46853775, '_source': {'fake_embedding': [-0.28560441330564046, 0.9958894823084921, 1.5489829880195058], 'num_characters': 5}}),
Document(page_content='foo bar', metadata={'_index': 'test-langchain-index', '_id': '5', '_score': 0.2086992, '_source': {'fake_embedding': [0.2533670476638539, 0.08100381646160418, 0.7763644080870179], 'num_characters': 7}})]

BM25

传统的关键词匹配。

def bm25_query(search_query: str) -> Dict:
return {
"query": {
"match": {
text_field: search_query,
},
},
}


bm25_retriever = ElasticsearchRetriever.from_es_params(
index_name=index_name,
body_func=bm25_query,
content_field=text_field,
url=es_url,
)

bm25_retriever.invoke("foo")
[Document(page_content='foo', metadata={'_index': 'test-langchain-index', '_id': '0', '_score': 0.9711467, '_source': {'fake_embedding': [-2.336764233933763, 0.27510289545940503, -0.7957597268194339], 'num_characters': 3}}),
Document(page_content='foo bar', metadata={'_index': 'test-langchain-index', '_id': '5', '_score': 0.7437035, '_source': {'fake_embedding': [0.2533670476638539, 0.08100381646160418, 0.7763644080870179], 'num_characters': 7}}),
Document(page_content='bla bla foo', metadata={'_index': 'test-langchain-index', '_id': '6', '_score': 0.6025789, '_source': {'fake_embedding': [1.7365927060137358, -0.5230400847844948, 0.7978339724186192], 'num_characters': 11}})]

使用Reciprocal Rank Fusion (RRF) 结合向量搜索和BM25搜索的结果集。

def hybrid_query(search_query: str) -> Dict:
vector = embeddings.embed_query(search_query) # same embeddings as for indexing
return {
"retriever": {
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"match": {
text_field: search_query,
}
}
}
},
{
"knn": {
"field": dense_vector_field,
"query_vector": vector,
"k": 5,
"num_candidates": 10,
}
},
]
}
}
}


hybrid_retriever = ElasticsearchRetriever.from_es_params(
index_name=index_name,
body_func=hybrid_query,
content_field=text_field,
url=es_url,
)

hybrid_retriever.invoke("foo")
[Document(page_content='foo', metadata={'_index': 'test-langchain-index', '_id': '0', '_score': 0.9711467, '_source': {'fake_embedding': [-2.336764233933763, 0.27510289545940503, -0.7957597268194339], 'num_characters': 3}}),
Document(page_content='foo bar', metadata={'_index': 'test-langchain-index', '_id': '5', '_score': 0.7437035, '_source': {'fake_embedding': [0.2533670476638539, 0.08100381646160418, 0.7763644080870179], 'num_characters': 7}}),
Document(page_content='bla bla foo', metadata={'_index': 'test-langchain-index', '_id': '6', '_score': 0.6025789, '_source': {'fake_embedding': [1.7365927060137358, -0.5230400847844948, 0.7978339724186192], 'num_characters': 11}})]

模糊匹配

关键词匹配具有拼写错误容忍度。

def fuzzy_query(search_query: str) -> Dict:
return {
"query": {
"match": {
text_field: {
"query": search_query,
"fuzziness": "AUTO",
}
},
},
}


fuzzy_retriever = ElasticsearchRetriever.from_es_params(
index_name=index_name,
body_func=fuzzy_query,
content_field=text_field,
url=es_url,
)

fuzzy_retriever.invoke("fox") # note the character tolernace
[Document(page_content='foo', metadata={'_index': 'test-langchain-index', '_id': '0', '_score': 0.6474311, '_source': {'fake_embedding': [-2.336764233933763, 0.27510289545940503, -0.7957597268194339], 'num_characters': 3}}),
Document(page_content='foo bar', metadata={'_index': 'test-langchain-index', '_id': '5', '_score': 0.49580228, '_source': {'fake_embedding': [0.2533670476638539, 0.08100381646160418, 0.7763644080870179], 'num_characters': 7}}),
Document(page_content='bla bla foo', metadata={'_index': 'test-langchain-index', '_id': '6', '_score': 0.40171927, '_source': {'fake_embedding': [1.7365927060137358, -0.5230400847844948, 0.7978339724186192], 'num_characters': 11}})]

复杂过滤

不同字段上的过滤器组合。

def filter_query_func(search_query: str) -> Dict:
return {
"query": {
"bool": {
"must": [
{"range": {num_characters_field: {"gte": 5}}},
],
"must_not": [
{"prefix": {text_field: "bla"}},
],
"should": [
{"match": {text_field: search_query}},
],
}
}
}


filtering_retriever = ElasticsearchRetriever.from_es_params(
index_name=index_name,
body_func=filter_query_func,
content_field=text_field,
url=es_url,
)

filtering_retriever.invoke("foo")
[Document(page_content='foo bar', metadata={'_index': 'test-langchain-index', '_id': '5', '_score': 1.7437035, '_source': {'fake_embedding': [0.2533670476638539, 0.08100381646160418, 0.7763644080870179], 'num_characters': 7}}),
Document(page_content='world', metadata={'_index': 'test-langchain-index', '_id': '2', '_score': 1.0, '_source': {'fake_embedding': [-0.7041151202179595, -1.4652961969276497, -0.25786766898672847], 'num_characters': 5}}),
Document(page_content='hello world', metadata={'_index': 'test-langchain-index', '_id': '3', '_score': 1.0, '_source': {'fake_embedding': [0.42728413221815387, -1.1889908285425348, -1.445433230084671], 'num_characters': 11}}),
Document(page_content='hello', metadata={'_index': 'test-langchain-index', '_id': '4', '_score': 1.0, '_source': {'fake_embedding': [-0.28560441330564046, 0.9958894823084921, 1.5489829880195058], 'num_characters': 5}})]

请注意,查询匹配位于顶部。通过筛选的其他文档也在结果集中,但它们都具有相同的分数。

自定义文档映射器

可以自定义将Elasticsearch结果(命中)映射到LangChain文档的函数。

def num_characters_mapper(hit: Dict[str, Any]) -> Document:
num_chars = hit["_source"][num_characters_field]
content = hit["_source"][text_field]
return Document(
page_content=f"This document has {num_chars} characters",
metadata={"text_content": content},
)


custom_mapped_retriever = ElasticsearchRetriever.from_es_params(
index_name=index_name,
body_func=filter_query_func,
document_mapper=num_characters_mapper,
url=es_url,
)

custom_mapped_retriever.invoke("foo")
[Document(page_content='This document has 7 characters', metadata={'text_content': 'foo bar'}),
Document(page_content='This document has 5 characters', metadata={'text_content': 'world'}),
Document(page_content='This document has 11 characters', metadata={'text_content': 'hello world'}),
Document(page_content='This document has 5 characters', metadata={'text_content': 'hello'})]

用法

根据上述示例,我们使用.invoke来发出单个查询。由于检索器是Runnables,我们也可以使用Runnable接口中的任何方法,例如.batch

在链中使用

我们还可以将检索器整合到中,以构建更大的应用程序,例如一个简单的RAG应用程序。为了演示目的,我们还实例化了一个OpenAI聊天模型。

%pip install -qU langchain-openai
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI

prompt = ChatPromptTemplate.from_template(
"""Answer the question based only on the context provided.

Context: {context}

Question: {question}"""
)

llm = ChatOpenAI(model="gpt-4o-mini")


def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)


chain = (
{"context": vector_retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("what is foo?")

API参考

有关所有ElasticsearchRetriever功能和配置的详细文档,请访问API参考


这个页面有帮助吗?