阿里云OpenSearch
Alibaba Cloud Opensearch 是一个一站式平台,用于开发智能搜索服务。
OpenSearch
建立在由Alibaba
开发的大规模分布式搜索引擎之上。OpenSearch
服务于阿里巴巴集团内的500多个商业案例以及数千个阿里云客户。OpenSearch
帮助开发不同搜索场景中的搜索服务,包括电子商务、O2O、多媒体、内容产业、社区和论坛以及企业中的大数据查询。
OpenSearch
帮助您开发高质量、免维护、高性能的智能搜索服务,为用户提供高搜索效率和准确性。
OpenSearch
提供了向量搜索功能。在特定场景中,尤其是试题搜索和图像搜索场景中,您可以结合使用向量搜索功能和多模态搜索功能,以提高搜索结果的准确性。
本笔记本展示了如何使用与Alibaba Cloud OpenSearch Vector Search Edition
相关的功能。
设置
购买实例并配置它
从阿里云购买OpenSearch向量搜索版,并根据帮助文档配置实例。
要运行,您应该有一个OpenSearch Vector Search Edition实例正在运行。
阿里云 OpenSearch 向量存储类
AlibabaCloudOpenSearch
类支持以下功能:
add_texts
add_documents
from_texts
from_documents
similarity_search
asimilarity_search
similarity_search_by_vector
asimilarity_search_by_vector
similarity_search_with_relevance_scores
delete_doc_by_texts
阅读帮助文档以快速熟悉并配置OpenSearch向量搜索版实例。
如果您在使用过程中遇到任何问题,请随时联系xingshaomin.xsm@alibaba-inc.com,我们将尽力为您提供帮助和支持。
实例启动并运行后,按照以下步骤拆分文档、获取嵌入、连接到阿里云OpenSearch实例、索引文档并执行向量检索。
我们需要先安装以下Python包。
%pip install --upgrade --quiet langchain-community alibabacloud_ha3engine_vector
我们想要使用OpenAIEmbeddings
,所以我们必须获取OpenAI API密钥。
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
示例
from langchain_community.vectorstores import (
AlibabaCloudOpenSearch,
AlibabaCloudOpenSearchSettings,
)
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
拆分文档并获取嵌入。
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
创建opensearch设置。
settings = AlibabaCloudOpenSearchSettings(
endpoint=" The endpoint of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch.",
instance_id="The identify of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch.",
protocol="Communication Protocol between SDK and Server, default is http.",
username="The username specified when purchasing the instance.",
password="The password specified when purchasing the instance.",
namespace="The instance data will be partitioned based on the namespace field. If the namespace is enabled, you need to specify the namespace field name during initialization. Otherwise, the queries cannot be executed correctly.",
tablename="The table name specified during instance configuration.",
embedding_field_separator="Delimiter specified for writing vector field data, default is comma.",
output_fields="Specify the field list returned when invoking OpenSearch, by default it is the value list of the field mapping field.",
field_name_mapping={
"id": "id", # The id field name mapping of index document.
"document": "document", # The text field name mapping of index document.
"embedding": "embedding", # The embedding field name mapping of index document.
"name_of_the_metadata_specified_during_search": "opensearch_metadata_field_name,=",
# The metadata field name mapping of index document, could specify multiple, The value field contains mapping name and operator, the operator would be used when executing metadata filter query,
# Currently supported logical operators are: > (greater than), < (less than), = (equal to), <= (less than or equal to), >= (greater than or equal to), != (not equal to).
# Refer to this link: https://help.aliyun.com/zh/open-search/vector-search-edition/filter-expression
},
)
# for example
# settings = AlibabaCloudOpenSearchSettings(
# endpoint='ha-cn-5yd3fhdm102.public.ha.aliyuncs.com',
# instance_id='ha-cn-5yd3fhdm102',
# username='instance user name',
# password='instance password',
# table_name='test_table',
# field_name_mapping={
# "id": "id",
# "document": "document",
# "embedding": "embedding",
# "string_field": "string_filed,=",
# "int_field": "int_filed,=",
# "float_field": "float_field,=",
# "double_field": "double_field,="
#
# },
# )
通过设置创建一个opensearch访问实例。
# Create an opensearch instance and index docs.
opensearch = AlibabaCloudOpenSearch.from_texts(
texts=docs, embedding=embeddings, config=settings
)
或
# Create an opensearch instance.
opensearch = AlibabaCloudOpenSearch(embedding=embeddings, config=settings)
添加文本并构建索引。
metadatas = [
{"string_field": "value1", "int_field": 1, "float_field": 1.0, "double_field": 2.0},
{"string_field": "value2", "int_field": 2, "float_field": 3.0, "double_field": 4.0},
{"string_field": "value3", "int_field": 3, "float_field": 5.0, "double_field": 6.0},
]
# the key of metadatas must match field_name_mapping in settings.
opensearch.add_texts(texts=docs, ids=[], metadatas=metadatas)
查询和检索数据。
query = "What did the president say about Ketanji Brown Jackson"
docs = opensearch.similarity_search(query)
print(docs[0].page_content)
查询并检索带有元数据的数据。
query = "What did the president say about Ketanji Brown Jackson"
metadata = {
"string_field": "value1",
"int_field": 1,
"float_field": 1.0,
"double_field": 2.0,
}
docs = opensearch.similarity_search(query, filter=metadata)
print(docs[0].page_content)
如果您在使用过程中遇到任何问题,请随时联系xingshaomin.xsm@alibaba-inc.com,我们将尽力为您提供帮助和支持。