Skip to main content
Open In ColabOpen on GitHub

UpstageEmbeddings

本笔记本介绍如何开始使用Upstage嵌入模型。

安装

安装 langchain-upstage 包。

pip install -U langchain-upstage

环境设置

确保设置以下环境变量:

import os

os.environ["UPSTAGE_API_KEY"] = "YOUR_API_KEY"

用法

初始化 UpstageEmbeddings 类。

from langchain_upstage import UpstageEmbeddings

embeddings = UpstageEmbeddings(model="solar-embedding-1-large")
API Reference:UpstageEmbeddings

使用 embed_documents 来嵌入文本或文档列表。

doc_result = embeddings.embed_documents(
["Sung is a professor.", "This is another document"]
)
print(doc_result)

使用 embed_query 来嵌入查询字符串。

query_result = embeddings.embed_query("What does Sung do?")
print(query_result)

使用 aembed_documentsaembed_query 进行异步操作。

# async embed query
await embeddings.aembed_query("My query to look up")
# async embed documents
await embeddings.aembed_documents(
["This is a content of the document", "This is another document"]
)

与向量存储一起使用

你可以使用UpstageEmbeddings与向量存储组件。以下展示了一个简单的示例。

from langchain_community.vectorstores import DocArrayInMemorySearch

vectorstore = DocArrayInMemorySearch.from_texts(
["harrison worked at kensho", "bears like to eat honey"],
embedding=UpstageEmbeddings(model="solar-embedding-1-large"),
)
retriever = vectorstore.as_retriever()
docs = retriever.invoke("Where did Harrison work?")
print(docs)

这个页面有帮助吗?