与 R / R 库的比较#
由于 pandas 旨在提供人们使用 R 进行的大量数据操作和分析功能,本页面开始提供对 R 语言 及其许多第三方库与 pandas 相关的更详细介绍。在与 R 和 CRAN 库的比较中,我们关注以下几点:
功能性 / 灵活性: 每个工具能做什么/不能做什么
性能:操作有多快。硬数字/基准测试更可取。
易用性:一个工具是否更容易/更难使用(你可能需要通过并排代码比较来判断这一点)
本页面也在这里为这些 R 包的用户提供一些翻译指南。
快速参考#
我们将从一个快速参考指南开始,将使用 dplyr 的一些常见 R 操作与 pandas 的等效操作配对。
查询、过滤、采样#
R |
pandas |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
排序#
R |
pandas |
---|---|
|
|
|
|
转换#
R |
pandas |
---|---|
|
|
|
|
|
|
分组和总结#
R |
pandas |
---|---|
|
|
|
|
|
|
|
|
基础 R#
使用 R 的 c
进行切片#
R 使得通过名称访问 data.frame
列变得容易
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
或通过整数位置
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
在 pandas 中通过名称选择多列是直接的
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list("abc"))
In [2]: df[["a", "c"]]
Out[2]:
a c
0 0.469112 -1.509059
1 -1.135632 -0.173215
2 0.119209 -0.861849
3 -2.104569 1.071804
4 0.721555 -1.039575
5 0.271860 0.567020
6 0.276232 -0.673690
7 0.113648 0.524988
8 0.404705 -1.715002
9 -1.039268 -1.157892
In [3]: df.loc[:, ["a", "c"]]
Out[3]:
a c
0 0.469112 -1.509059
1 -1.135632 -0.173215
2 0.119209 -0.861849
3 -2.104569 1.071804
4 0.721555 -1.039575
5 0.271860 0.567020
6 0.276232 -0.673690
7 0.113648 0.524988
8 0.404705 -1.715002
9 -1.039268 -1.157892
通过整数位置选择多个不连续的列可以通过 iloc
索引器属性和 numpy.r_
的组合来实现。
In [4]: named = list("abcdefg")
In [5]: n = 30
In [6]: columns = named + np.arange(len(named), n).tolist()
In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)
In [8]: df.iloc[:, np.r_[:10, 24:30]]
Out[8]:
a b c d e f g ... 9 24 25 26 27 28 29
0 -1.344312 0.844885 1.075770 -0.109050 1.643563 -1.469388 0.357021 ... -0.968914 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317
1 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.607920 1.024180 ... -2.211372 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738
2 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849 -0.954208 ... -0.826591 0.084844 0.432390 1.519970 -0.493662 0.600178 0.274230
3 0.132885 -0.023688 2.410179 1.450520 0.206053 -0.251905 -2.213588 ... 0.299368 -2.484478 -0.281461 0.030711 0.109121 1.126203 -0.977349
4 1.474071 -0.064034 -1.282782 0.781836 -1.071357 0.441153 2.353925 ... -0.744471 -1.197071 -1.066969 -0.303421 -0.858447 0.306996 -0.028665
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
25 1.492125 -0.068190 0.681456 1.221829 -0.434352 1.204815 -0.195612 ... -0.796211 1.944517 0.042344 -0.307904 0.428572 0.880609 0.487645
26 0.725238 0.624607 -0.141185 -0.143948 -0.328162 2.095086 -0.608888 ... -2.513465 -0.846188 1.190624 0.778507 1.008500 1.424017 0.717110
27 1.262419 1.950057 0.301038 -0.933858 0.814946 0.181439 -0.110015 ... 0.307941 -1.341814 0.334281 -0.162227 1.007824 2.826008 1.458383
28 -1.585746 -0.899734 0.921494 -0.211762 -0.059182 0.058308 0.915377 ... -3.060395 0.403620 -0.026602 -0.240481 0.577223 -1.088417 0.326687
29 -0.986248 0.169729 -1.158091 1.019673 0.646039 0.917399 -0.010435 ... 0.869610 -1.209247 -0.671466 0.332872 -2.013086 -1.602549 0.333109
[30 rows x 16 columns]
aggregate
#
在 R 中,您可能希望将数据分割成子集并计算每个子集的平均值。使用一个名为 df
的数据框,并将其按 by1
和 by2
分组:
df <- data.frame(
v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
groupby()
方法类似于基础 R aggregate
函数。
In [9]: df = pd.DataFrame(
...: {
...: "v1": [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
...: "v2": [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
...: "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
...: "by2": [
...: "wet",
...: "dry",
...: 99,
...: 95,
...: np.nan,
...: "damp",
...: 95,
...: 99,
...: "red",
...: 99,
...: np.nan,
...: np.nan,
...: ],
...: }
...: )
...:
In [10]: g = df.groupby(["by1", "by2"])
In [11]: g[["v1", "v2"]].mean()
Out[11]:
v1 v2
by1 by2
1 95 5.0 55.0
99 5.0 55.0
2 95 7.0 77.0
99 NaN NaN
big damp 3.0 33.0
blue dry 3.0 33.0
red red 4.0 44.0
wet 1.0 11.0
更多细节和示例请参见 groupby 文档。
match
/ %in%
#
在R中选择数据的一个常见方法是使用 %in%
,它是由函数 match
定义的。运算符 %in%
用于返回一个逻辑向量,指示是否存在匹配项:
s <- 0:4
s %in% c(2,4)
isin()
方法类似于 R 的 %in%
操作符:
In [12]: s = pd.Series(np.arange(5), dtype=np.float32)
In [13]: s.isin([2, 4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
match
函数返回其第一个参数在其第二个参数中匹配位置的向量:
s <- 0:4
match(s, c(2,4))
更多详情和示例请参见 重塑文档。
tapply
#
tapply
类似于 aggregate
,但数据可以是参差不齐的数组,因为子类大小可能不规则。使用一个名为 baseball
的数据框,并根据数组 team
检索信息:
baseball <-
data.frame(team = gl(5, 5,
labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team,
max)
在 pandas 中,我们可以使用 pivot_table()
方法来处理这个:
In [14]: import random
In [15]: import string
In [16]: baseball = pd.DataFrame(
....: {
....: "team": ["team %d" % (x + 1) for x in range(5)] * 5,
....: "player": random.sample(list(string.ascii_lowercase), 25),
....: "batting avg": np.random.uniform(0.200, 0.400, 25),
....: }
....: )
....:
In [17]: baseball.pivot_table(values="batting avg", columns="team", aggfunc="max")
Out[17]:
team team 1 team 2 team 3 team 4 team 5
batting avg 0.352134 0.295327 0.397191 0.394457 0.396194
更多详情和示例请参见 重塑文档。
subset
#
query()
方法类似于基础 R 的 subset
函数。在 R 中,你可能想要获取一个 data.frame
的行,其中一列的值小于另一列的值:
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,] # note the comma
在 pandas 中,有几种方法可以进行子集选择。你可以使用 query()
或者将表达式作为索引/切片传递,也可以使用标准的布尔索引:
In [18]: df = pd.DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
In [19]: df.query("a <= b")
Out[19]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
In [20]: df[df["a"] <= df["b"]]
Out[20]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
In [21]: df.loc[df["a"] <= df["b"]]
Out[21]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
更多细节和示例请参见 查询文档。
with
#
在 R 中使用一个名为 df
的 data.frame 并包含列 a
和 b
的表达式可以通过 with
这样评估:
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
在 pandas 中,等效的表达式使用 eval()
方法,将是:
In [22]: df = pd.DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
In [23]: df.eval("a + b")
Out[23]:
0 -0.091430
1 -2.483890
2 -0.252728
3 -0.626444
4 -0.261740
5 2.149503
6 -0.332214
7 0.799331
8 -2.377245
9 2.104677
dtype: float64
In [24]: df["a"] + df["b"] # same as the previous expression
Out[24]:
0 -0.091430
1 -2.483890
2 -0.252728
3 -0.626444
4 -0.261740
5 2.149503
6 -0.332214
7 0.799331
8 -2.377245
9 2.104677
dtype: float64
plyr#
plyr
是一个用于数据分析的分治策略的 R 库。这些函数围绕 R 中的三种数据结构,a
表示 数组
,l
表示 列表
,d
表示 数据框
。下表展示了这些数据结构在 Python 中是如何映射的。
R |
Python |
---|---|
数组 |
列表 |
列表 |
字典或对象列表 |
data.frame |
dataframe |
ddply#
在 R 中使用一个名为 df
的 data.frame,其中你想要按 month
总结 x
:
require(plyr)
df <- data.frame(
x = runif(120, 1, 168),
y = runif(120, 7, 334),
z = runif(120, 1.7, 20.7),
month = rep(c(5,6,7,8),30),
week = sample(1:4, 120, TRUE)
)
ddply(df, .(month, week), summarize,
mean = round(mean(x), 2),
sd = round(sd(x), 2))
在 pandas 中,使用 groupby()
方法的等效表达式为:
In [25]: df = pd.DataFrame(
....: {
....: "x": np.random.uniform(1.0, 168.0, 120),
....: "y": np.random.uniform(7.0, 334.0, 120),
....: "z": np.random.uniform(1.7, 20.7, 120),
....: "month": [5, 6, 7, 8] * 30,
....: "week": np.random.randint(1, 4, 120),
....: }
....: )
....:
In [26]: grouped = df.groupby(["month", "week"])
In [27]: grouped["x"].agg(["mean", "std"])
Out[27]:
mean std
month week
5 1 63.653367 40.601965
2 78.126605 53.342400
3 92.091886 57.630110
6 1 81.747070 54.339218
2 70.971205 54.687287
3 100.968344 54.010081
7 1 61.576332 38.844274
2 61.733510 48.209013
3 71.688795 37.595638
8 1 62.741922 34.618153
2 91.774627 49.790202
3 73.936856 60.773900
更多细节和示例请参见 groupby 文档。
reshape / reshape2#
meltarray#
在 R 中使用一个名为 a
的三维数组,并将其转换为 data.frame 的表达式:
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
在Python中,由于 a
是一个列表,你可以简单地使用列表推导。
In [28]: a = np.array(list(range(1, 24)) + [np.NAN]).reshape(2, 3, 4)
In [29]: pd.DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)])
Out[29]:
0 1 2 3
0 0 0 0 1.0
1 0 0 1 2.0
2 0 0 2 3.0
3 0 0 3 4.0
4 0 1 0 5.0
.. .. .. .. ...
19 1 1 3 20.0
20 1 2 0 21.0
21 1 2 1 22.0
22 1 2 2 23.0
23 1 2 3 NaN
[24 rows x 4 columns]
meltlist#
在R中使用一个名为 a
的列表,并将其转换为 data.frame 的表达式:
a <- as.list(c(1:4, NA))
data.frame(melt(a))
在Python中,这个列表将是一个元组列表,因此 DataFrame()
方法会根据需要将其转换为数据框。
In [30]: a = list(enumerate(list(range(1, 5)) + [np.NAN]))
In [31]: pd.DataFrame(a)
Out[31]:
0 1
0 0 1.0
1 1 2.0
2 2 3.0
3 3 4.0
4 4 NaN
更多详情和示例请参见 数据结构介绍文档。
meltdf#
在 R 中使用一个名为 cheese
的 data.frame 的表达式,你想要重塑这个 data.frame:
cheese <- data.frame(
first = c('John', 'Mary'),
last = c('Doe', 'Bo'),
height = c(5.5, 6.0),
weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
在Python中,melt()
方法是R的等价物:
In [32]: cheese = pd.DataFrame(
....: {
....: "first": ["John", "Mary"],
....: "last": ["Doe", "Bo"],
....: "height": [5.5, 6.0],
....: "weight": [130, 150],
....: }
....: )
....:
In [33]: pd.melt(cheese, id_vars=["first", "last"])
Out[33]:
first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [34]: cheese.set_index(["first", "last"]).stack() # alternative way
Out[34]:
first last
John Doe height 5.5
weight 130.0
Mary Bo height 6.0
weight 150.0
dtype: float64
更多细节和示例请参见 重塑文档。
cast#
在 R 中,acast
是一个使用名为 df
的 data.frame 来转换成更高维数组的表达式:
df <- data.frame(
x = runif(12, 1, 168),
y = runif(12, 7, 334),
z = runif(12, 1.7, 20.7),
month = rep(c(5,6,7),4),
week = rep(c(1,2), 6)
)
mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
在Python中,最好的方法是使用 pivot_table()
:
In [35]: df = pd.DataFrame(
....: {
....: "x": np.random.uniform(1.0, 168.0, 12),
....: "y": np.random.uniform(7.0, 334.0, 12),
....: "z": np.random.uniform(1.7, 20.7, 12),
....: "month": [5, 6, 7] * 4,
....: "week": [1, 2] * 6,
....: }
....: )
....:
In [36]: mdf = pd.melt(df, id_vars=["month", "week"])
In [37]: pd.pivot_table(
....: mdf,
....: values="value",
....: index=["variable", "week"],
....: columns=["month"],
....: aggfunc="mean",
....: )
....:
Out[37]:
month 5 6 7
variable week
x 1 93.888747 98.762034 55.219673
2 94.391427 38.112932 83.942781
y 1 94.306912 279.454811 227.840449
2 87.392662 193.028166 173.899260
z 1 11.016009 10.079307 16.170549
2 8.476111 17.638509 19.003494
同样地,对于在 R 中使用名为 df
的 data.frame 基于 Animal
和 FeedType
聚合信息的 dcast
:
df <- data.frame(
Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
'Animal2', 'Animal3'),
FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
Amount = c(10, 7, 4, 2, 5, 6, 2)
)
dcast(df, Animal ~ FeedType, sum, fill=NaN)
# Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))
Python 可以通过两种不同的方式来解决这个问题。首先,类似于上面的方法使用 pivot_table()
:
In [38]: df = pd.DataFrame(
....: {
....: "Animal": [
....: "Animal1",
....: "Animal2",
....: "Animal3",
....: "Animal2",
....: "Animal1",
....: "Animal2",
....: "Animal3",
....: ],
....: "FeedType": ["A", "B", "A", "A", "B", "B", "A"],
....: "Amount": [10, 7, 4, 2, 5, 6, 2],
....: }
....: )
....:
In [39]: df.pivot_table(values="Amount", index="Animal", columns="FeedType", aggfunc="sum")
Out[39]:
FeedType A B
Animal
Animal1 10.0 5.0
Animal2 2.0 13.0
Animal3 6.0 NaN
第二种方法是使用 groupby()
方法:
In [40]: df.groupby(["Animal", "FeedType"])["Amount"].sum()
Out[40]:
Animal FeedType
Animal1 A 10
B 5
Animal2 A 2
B 13
Animal3 A 6
Name: Amount, dtype: int64
factor
#
pandas 有一个用于分类数据的 数据类型 。
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
在 pandas 中,这可以通过 pd.cut
和 astype("category")
来实现:
In [41]: pd.cut(pd.Series([1, 2, 3, 4, 5, 6]), 3)
Out[41]:
0 (0.995, 2.667]
1 (0.995, 2.667]
2 (2.667, 4.333]
3 (2.667, 4.333]
4 (4.333, 6.0]
5 (4.333, 6.0]
dtype: category
Categories (3, interval[float64, right]): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6.0]]
In [42]: pd.Series([1, 2, 3, 2, 2, 3]).astype("category")
Out[42]:
0 1
1 2
2 3
3 2
4 2
5 3
dtype: category
Categories (3, int64): [1, 2, 3]