scipy.fftpack.

diff#

scipy.fftpack.diff(x, order=1, period=None, _cache={})[源代码][源代码]#

返回周期序列 x 的第 k 阶导数(或积分)。

如果 x_j 和 y_j 分别是周期函数 x 和 y 的傅里叶系数,那么:

y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
y_0 = 0 if order is not 0.
参数:
xarray_like

输入数组。

顺序int, 可选

微分的顺序。默认顺序是 1。如果顺序为负,则在假设 x_0 == 0 的情况下进行积分。

周期float, 可选

序列的假设周期。默认值是 2*pi

注释

如果 sum(x, axis=0) = 0 那么 diff(diff(x, k), -k) == x (在数值精度范围内)。

对于奇数阶和偶数 len(x) ,奈奎斯特模式被设为零。