scipy.ndimage.
binary_propagation#
- scipy.ndimage.binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0)[源代码][源代码]#
使用给定的结构元素进行多维二进制传播。
- 参数:
- 输入array_like
要在 mask 内部传播的二进制图像。
- 结构类似数组, 可选
在连续膨胀中使用的结构元素。输出可能取决于结构元素,特别是如果 mask 有多个连通分量。如果没有提供结构元素,则会生成一个连通性等于一的方形元素。
- 掩码类似数组, 可选
二进制掩码定义了 input 允许传播的区域。
- 输出ndarray,可选
与输入形状相同的数组,输出将被放置在其中。默认情况下,会创建一个新数组。
- border_valueint (转换为 0 或 1), 可选
输出数组边界处的值。
- 起源int 或 int 的元组,可选
过滤器的放置位置,默认值为 0。
- 返回:
- binary_propagationndarray
在 mask 内部的 input 进行二进制传播。
注释
此函数在功能上等同于调用 binary_dilation 时迭代次数小于一:迭代膨胀直到结果不再变化。
在原始图像内部进行侵蚀和传播的连续过程可以用来替代 开运算,以删除小物体的同时保持较大物体的轮廓不受影响。
参考文献
[2]I.T. Young, J.J. Gerbrands, 和 L.J. van Vliet, “图像处理基础”, 1998 ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf
示例
>>> from scipy import ndimage >>> import numpy as np >>> input = np.zeros((8, 8), dtype=int) >>> input[2, 2] = 1 >>> mask = np.zeros((8, 8), dtype=int) >>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1 >>> input array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]) >>> mask array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) >>> ndimage.binary_propagation(input, mask=mask).astype(int) array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]) >>> ndimage.binary_propagation(input, mask=mask,\ ... structure=np.ones((3,3))).astype(int) array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
>>> # Comparison between opening and erosion+propagation >>> a = np.zeros((6,6), dtype=int) >>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1 >>> a array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1]]) >>> ndimage.binary_opening(a).astype(int) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0]]) >>> b = ndimage.binary_erosion(a) >>> b.astype(int) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]) >>> ndimage.binary_propagation(b, mask=a).astype(int) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0]])