scipy.ndimage.

gaussian_filter#

scipy.ndimage.gaussian_filter(input, sigma, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0, *, radius=None, axes=None)[源代码][源代码]#

多维高斯滤波器。

参数:
输入array_like

输入数组。

sigma标量或标量序列

高斯核的标准差。高斯滤波器的标准差按每个轴给定为一个序列,或作为一个单一数字,在这种情况下,它对所有轴都是相等的。

顺序int 或 int 序列,可选

每个轴上的滤波器顺序以整数序列或单个数字的形式给出。顺序为0对应于与高斯核的卷积。正顺序对应于与高斯导数的卷积。

输出数组或数据类型,可选

要放置输出的数组,或返回数组的 dtype。默认情况下,将创建一个与输入具有相同 dtype 的数组。

模式str 或 序列, 可选

mode 参数决定了当滤波器跨越边界时输入数组如何扩展。通过传递一个长度等于输入数组维数的模式序列,可以沿着每个轴指定不同的模式。默认值是 ‘reflect’。有效值及其行为如下:

‘reflect’ (d c b a | a b c d | d c b a)

输入通过反射最后一个像素的边缘来扩展。这种模式有时也被称为半样本对称。

‘常量’ (k k k k | a b c d | k k k k)

输入通过填充边缘以外的所有值来扩展,这些值由 cval 参数定义为相同的常数值。

‘nearest’ (a a a a | a b c d | d d d d)

输入通过复制最后一个像素来扩展。

‘mirror’ (d c b | a b c d | c b a)

输入通过围绕最后一个像素的中心进行反射来扩展。这种模式有时也被称为全样本对称。

‘wrap’ (a b c d | a b c d | a b c d)

输入通过环绕到相对的边缘来扩展。

为了与插值函数保持一致,也可以使用以下模式名称:

‘网格常数’

这是“常量”的同义词。

‘grid-mirror’

这是“reflect”的同义词。

‘grid-wrap’

这是 ‘wrap’ 的同义词。

cval标量,可选

如果 mode 是 ‘constant’,则用于填充输入边缘之外的值。默认值为 0.0。

截断float, 可选

将过滤器截断为此数量的标准差。默认值是 4.0。

半径None 或 int 或 int 序列,可选

高斯核的半径。半径可以作为序列给出,每个轴对应一个值,或者作为一个单一数字,在这种情况下,所有轴的半径都相同。如果指定,每个轴上的核大小将为 2*radius + 1,并且 truncate 将被忽略。默认为 None。

int 或 None 的元组,可选

如果为 None,则 input 沿所有轴进行过滤。否则,input 沿指定的轴进行过滤。当指定 axes 时,用于 sigmaordermode 和/或 radius 的任何元组的长度必须与 axes 的长度匹配。这些元组中的第 i 个条目对应于 axes 中的第 i 个条目。

返回:
高斯滤波器ndarray

返回与 input 形状相同的数组。

注释

多维滤波器实现为一系列一维卷积滤波器。中间数组以与输出相同的数据类型存储。因此,对于精度有限的输出类型,结果可能不精确,因为中间结果可能以不足的精度存储。

高斯核在每个轴上的大小将为 2*radius + 1。如果 radius 为 None,将使用默认的 radius = round(truncate * sigma)

示例

>>> from scipy.ndimage import gaussian_filter
>>> import numpy as np
>>> a = np.arange(50, step=2).reshape((5,5))
>>> a
array([[ 0,  2,  4,  6,  8],
       [10, 12, 14, 16, 18],
       [20, 22, 24, 26, 28],
       [30, 32, 34, 36, 38],
       [40, 42, 44, 46, 48]])
>>> gaussian_filter(a, sigma=1)
array([[ 4,  6,  8,  9, 11],
       [10, 12, 14, 15, 17],
       [20, 22, 24, 25, 27],
       [29, 31, 33, 34, 36],
       [35, 37, 39, 40, 42]])
>>> from scipy import datasets
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = datasets.ascent()
>>> result = gaussian_filter(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
../../_images/scipy-ndimage-gaussian_filter-1.png