scipy.ndimage.

shift#

scipy.ndimage.shift(input, shift, output=None, order=3, mode='constant', cval=0.0, prefilter=True)[源代码][源代码]#

移动数组。

数组使用请求阶数的样条插值进行移位。超出输入边界范围的点根据给定的模式填充。

参数:
输入array_like

输入数组。

shift浮点数或序列

沿轴的移动。如果是浮点数,shift 对每个轴都是相同的。如果是序列,shift 应该为每个轴包含一个值。

输出数组或数据类型,可选

要放置输出的数组,或返回数组的 dtype。默认情况下,将创建一个与输入具有相同 dtype 的数组。

顺序int, 可选

样条插值的顺序,默认是 3。顺序必须在 0-5 的范围内。

模式{‘reflect’, ‘grid-mirror’, ‘constant’, ‘grid-constant’, ‘nearest’, ‘mirror’, ‘grid-wrap’, ‘wrap’}, 可选

mode 参数决定了输入数组在边界之外如何扩展。默认值为 ‘constant’。每个有效值的行为如下(参见 边界模式 的额外图表和详细信息):

‘reflect’ (d c b a | a b c d | d c b a)

输入通过反射最后一个像素的边缘来扩展。这种模式有时也被称为半样本对称。

‘grid-mirror’

这是“reflect”的同义词。

‘常量’ (k k k k | a b c d | k k k k)

输入通过填充边缘之外的所有值来扩展,这些值由 cval 参数定义为相同的常数值。在输入边缘之外不进行插值。

‘grid-constant’ (k k k k | a b c d | k k k k)

输入通过填充边缘之外的所有值来扩展,这些值由 cval 参数定义为相同的常数值。插值也发生在输入范围之外的样本中。

‘nearest’ (a a a a | a b c d | d d d d)

输入通过复制最后一个像素来扩展。

‘mirror’ (d c b | a b c d | c b a)

输入通过围绕最后一个像素的中心进行反射来扩展。这种模式有时也被称为全样本对称。

‘grid-wrap’ (a b c d | a b c d | a b c d)

输入通过环绕到相对的边缘来扩展。

‘wrap’ (d b c d | a b c d | b c a b)

输入通过环绕到相对的边缘来扩展,但这种方式使得最后一个点和初始点完全重叠。在这种情况下,重叠点的采样选择并不明确。

cval标量,可选

如果 mode 是 ‘constant’,则用于填充输入边缘之外的值。默认值为 0.0。

预过滤器bool, 可选

确定是否在插值之前使用 spline_filter 对输入数组进行预过滤。默认值为 True,这将创建一个临时的 float64 数组来存储过滤后的值,如果 order > 1。如果设置为 False,则如果 order > 1,输出将略微模糊,除非输入已经预过滤,即它是原始输入上调用 spline_filter 的结果。

返回:
shiftndarray

移位的输入。

参见

affine_transform

仿射变换

注释

对于复数 输入,此函数独立地移动实部和虚部。

Added in version 1.6.0: 复数值支持已添加。

示例

导入必要的模块和示例图像。

>>> from scipy.ndimage import shift
>>> import matplotlib.pyplot as plt
>>> from scipy import datasets
>>> image = datasets.ascent()

将图像垂直移动 20 像素。

>>> image_shifted_vertically = shift(image, (20, 0))

将图像垂直移动 -200 像素,水平移动 100 像素。

>>> image_shifted_both_directions = shift(image, (-200, 100))

绘制原始图像和移位图像。

>>> fig, axes = plt.subplots(3, 1, figsize=(4, 12))
>>> plt.gray()  # show the filtered result in grayscale
>>> top, middle, bottom = axes
>>> for ax in axes:
...     ax.set_axis_off()  # remove coordinate system
>>> top.imshow(image)
>>> top.set_title("Original image")
>>> middle.imshow(image_shifted_vertically)
>>> middle.set_title("Vertically shifted image")
>>> bottom.imshow(image_shifted_both_directions)
>>> bottom.set_title("Image shifted in both directions")
>>> fig.tight_layout()
../../_images/scipy-ndimage-shift-1.png