scipy.linalg.
菲德勒#
- scipy.linalg.fiedler(a)[源代码][源代码]#
返回一个对称的 Fiedler 矩阵
给定一个数字序列 a,Fiedler 矩阵具有结构
F[i, j] = np.abs(a[i] - a[j])
,因此具有零对角线和非负元素。Fiedler 矩阵具有一个占主导地位的正特征值,其他特征值为负。虽然通常不适用,但对于某些输入,逆矩阵和行列式可以如 [1] 中所示明确推导。- 参数:
- a(n,) 数组类
系数数组
- 返回:
- F(n, n) ndarray
注释
Added in version 1.3.0.
参考文献
[1]J. Todd, “Basic Numerical Mathematics: Vol.2 : Numerical Algebra”, 1977, Birkhauser, DOI:10.1007/978-3-0348-7286-7
示例
>>> import numpy as np >>> from scipy.linalg import det, inv, fiedler >>> a = [1, 4, 12, 45, 77] >>> n = len(a) >>> A = fiedler(a) >>> A array([[ 0, 3, 11, 44, 76], [ 3, 0, 8, 41, 73], [11, 8, 0, 33, 65], [44, 41, 33, 0, 32], [76, 73, 65, 32, 0]])
行列式和逆矩阵的显式公式似乎只适用于单调递增/递减的数组。注意三对角结构和角落。
>>> Ai = inv(A) >>> Ai[np.abs(Ai) < 1e-12] = 0. # cleanup the numerical noise for display >>> Ai array([[-0.16008772, 0.16666667, 0. , 0. , 0.00657895], [ 0.16666667, -0.22916667, 0.0625 , 0. , 0. ], [ 0. , 0.0625 , -0.07765152, 0.01515152, 0. ], [ 0. , 0. , 0.01515152, -0.03077652, 0.015625 ], [ 0.00657895, 0. , 0. , 0.015625 , -0.00904605]]) >>> det(A) 15409151.999999998 >>> (-1)**(n-1) * 2**(n-2) * np.diff(a).prod() * (a[-1] - a[0]) 15409152