Search Shortcut cmd + k | ctrl + k
- Installation
- Guides
- Overview
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- PostgreSQL Import
- Meta Queries
- ODBC
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec Filesystems
- SQL Features
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Scala
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Alter View
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Create Type
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Rules for Case Sensitivity
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Documentation
/ Client APIs
/ Python
Result Conversion
DuckDB's Python client provides multiple additional methods that can be used to efficiently retrieve data.
NumPy
fetchnumpy()
fetches the data as a dictionary of NumPy arrays
Pandas
df()
fetches the data as a Pandas DataFramefetchdf()
is an alias ofdf()
fetch_df()
is an alias ofdf()
fetch_df_chunk(vector_multiple)
fetches a portion of the results into a DataFrame. The number of rows returned in each chunk is the vector size (2048 by default) * vector_multiple (1 by default).
Apache Arrow
arrow()
fetches the data as an Arrow tablefetch_arrow_table()
is an alias ofarrow()
fetch_record_batch(chunk_size)
returns an Arrow record batch reader withchunk_size
rows per batch
Polars
pl()
fetches the data as a Polars DataFrame
Below are some examples using this functionality. See the Python guides for more examples.
# fetch as Pandas DataFrame
df = con.execute("SELECT * FROM items").fetchdf()
print(df)
# item value count
# 0 jeans 20.0 1
# 1 hammer 42.2 2
# 2 laptop 2000.0 1
# 3 chainsaw 500.0 10
# 4 iphone 300.0 2
# fetch as dictionary of numpy arrays
arr = con.execute("SELECT * FROM items").fetchnumpy()
print(arr)
# {'item': masked_array(data=['jeans', 'hammer', 'laptop', 'chainsaw', 'iphone'],
# mask=[False, False, False, False, False],
# fill_value='?',
# dtype=object), 'value': masked_array(data=[20.0, 42.2, 2000.0, 500.0, 300.0],
# mask=[False, False, False, False, False],
# fill_value=1e+20), 'count': masked_array(data=[1, 2, 1, 10, 2],
# mask=[False, False, False, False, False],
# fill_value=999999,
# dtype=int32)}
# fetch as an Arrow table. Converting to Pandas afterwards just for pretty printing
tbl = con.execute("SELECT * FROM items").fetch_arrow_table()
print(tbl.to_pandas())
# item value count
# 0 jeans 20.00 1
# 1 hammer 42.20 2
# 2 laptop 2000.00 1
# 3 chainsaw 500.00 10
# 4 iphone 300.00 2