- Installation
- Guides
- Overview
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- PostgreSQL Import
- Meta Queries
- ODBC
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec Filesystems
- SQL Features
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Scala
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Alter View
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Create Type
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Rules for Case Sensitivity
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Unfortunately there are some issues that are either beyond our control or are very elusive / hard to track down.
Below is a list of these issues that you might have to be aware of, depending on your workflow.
Numpy Import Multithreading
When making use of multi threading and fetching results either directly as Numpy arrays or indirectly through a Pandas DataFrame, it might be necessary to ensure that numpy.core.multiarray
is imported.
If this module has not been imported from the main thread, and a different thread during execution attempts to import it this causes either a deadlock or a crash.
To avoid this, it's recommended to import numpy.core.multiarray
before starting up threads.
Running EXPLAIN renders newlines in Jupyter and IPython
When DuckDB is run in Jupyter notebooks or in the IPython shell, the output of the EXPLAIN
statement contains hard line breaks (\n
):
In [1]: import duckdb
...: duckdb.sql("EXPLAIN SELECT 42 AS x")
Out[1]:
┌───────────────┬───────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ explain_key │ explain_value │
│ varchar │ varchar │
├───────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ physical_plan │ ┌───────────────────────────┐\n│ PROJECTION │\n│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │\n│ x … │
└───────────────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
To work around this, print
the output of the explain()
function:
In [2]: print(duckdb.sql("SELECT 42 AS x").explain())
┌───────────────────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ x │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ DUMMY_SCAN │
└───────────────────────────┘
Please also check out the Jupyter guide for tips on using Jupyter with JupySQL.