- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The Appender can be used to load bulk data into a DuckDB database. It is currently available in the C, C++, Go, Java, and Rust APIs. The Appender is tied to a connection, and will use the transaction context of that connection when appending. An Appender always appends to a single table in the database file.
In the C++ API, the Appender works as follows:
DuckDB db;
Connection con(db);
// create the table
con.Query("CREATE TABLE people (id INTEGER, name VARCHAR)");
// initialize the appender
Appender appender(con, "people");
The AppendRow
function is the easiest way of appending data. It uses recursive templates to allow you to put all the values of a single row within one function call, as follows:
appender.AppendRow(1, "Mark");
Rows can also be individually constructed using the BeginRow
, EndRow
and Append
methods. This is done internally by AppendRow
, and hence has the same performance characteristics.
appender.BeginRow();
appender.Append<int32_t>(2);
appender.Append<string>("Hannes");
appender.EndRow();
Any values added to the Appender are cached prior to being inserted into the database system
for performance reasons. That means that, while appending, the rows might not be immediately visible in the system. The cache is automatically flushed when the Appender goes out of scope or when appender.Close()
is called. The cache can also be manually flushed using the appender.Flush()
method. After either Flush
or Close
is called, all the data has been written to the database system.
Date, Time and Timestamps
While numbers and strings are rather self-explanatory, dates, times and timestamps require some explanation. They can be directly appended using the methods provided by duckdb::Date
, duckdb::Time
or duckdb::Timestamp
. They can also be appended using the internal duckdb::Value
type, however, this adds some additional overheads and should be avoided if possible.
Below is a short example:
con.Query("CREATE TABLE dates (d DATE, t TIME, ts TIMESTAMP)");
Appender appender(con, "dates");
// construct the values using the Date/Time/Timestamp types
// (this is the most efficient approach)
appender.AppendRow(
Date::FromDate(1992, 1, 1),
Time::FromTime(1, 1, 1, 0),
Timestamp::FromDatetime(Date::FromDate(1992, 1, 1), Time::FromTime(1, 1, 1, 0))
);
// construct duckdb::Value objects
appender.AppendRow(
Value::DATE(1992, 1, 1),
Value::TIME(1, 1, 1, 0),
Value::TIMESTAMP(1992, 1, 1, 1, 1, 1, 0)
);
Commit Frequency
By default, the appender performs a commits every 204,800 rows.
You can change this by explicitly using transactions and surrounding your batches of AppendRow
calls by BEGIN TRANSACTION
and COMMIT
statements.
Handling Constraint Violations
If the Appender encounters a PRIMARY KEY
conflict or a UNIQUE
constraint violation, it fails and returns the following error:
Constraint Error: PRIMARY KEY or UNIQUE constraint violated: duplicate key "..."
In this case, the entire append operation fails and no rows are inserted.
Appender Support in Other Clients
The Appender is also available in the following client APIs: