Search Shortcut cmd + k | ctrl + k
- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Documentation
/ SQL
/ DuckDB's SQL Dialect
Friendly SQL
DuckDB offers several advanced SQL features as well syntactic sugar to make SQL queries more concise. We call these colloquially as “friendly SQL”.
Several of these features are also supported in other systems while some are (currently) exclusive to DuckDB.
Clauses
- Creating tables and inserting data:
CREATE OR REPLACE TABLE
: this clause allows avoidingDROP TABLE IF EXISTS
statements in scripts.CREATE TABLE ... AS SELECT
(CTAS): this clause allows creating a new table from the output of a table without manually defining a schema.INSERT INTO ... BY NAME
: this variant of theINSERT
statement allows using column names instead of positions.
- Describing tables and computing statistics:
- Making SQL clauses more compact:
FROM
-first syntax with an optionalSELECT
clause: DuckDB allows queries in the form ofFROM tbl
which selects all columns (performing aSELECT *
statement).GROUP BY ALL
: this clause allows omitting the group-by columns by inferring them from the list of attributes in theSELECT
clause.ORDER BY ALL
: this clause allows ordering on all columns (e.g., to ensure deterministic results).SELECT * EXCLUDE
: theEXCLUDE
option allows excluding specific columns from the*
expression.SELECT * REPLACE
: theREPLACE
option allows replacing specific columns with different expressions in a*
expression.UNION BY NAME
: this clause performing theUNION
operation along the names of columns (instead of relying on positions).
- Transforming tables:
Query Features
- Column aliases in
WHERE
,GROUP BY
, andHAVING
COLUMNS()
expression can be used to execute the same expression on multiple columns:- Reusable column aliases, e.g.:
SELECT i + 1 AS j, j + 2 AS k FROM range(0, 3) t(i)
- Advanced aggregation features for analytical (OLAP) queries:
count()
shorthand forcount(*)
Literals and Identifiers
- Case-insensitivity while maintaining case of entities in the catalog
- Deduplicating identifiers
- Underscores as digit separators in numeric literals
Data Types
Data Import
- Auto-detecting the headers and schema of CSV files
- Directly querying CSV files and Parquet files
- Loading from files using the syntax
FROM 'my.csv'
,FROM 'my.csv.gz'
,FROM 'my.parquet'
, etc. - Filename expansion (globbing), e.g.:
FROM 'my-data/part-*.parquet'
Functions and Expressions
- Dot operator for function chaining:
SELECT ('hello').upper()
- String formatters:
the
format()
function with thefmt
syntax and theprintf() function
- List comprehensions
- List slicing
- String slicing
STRUCT.*
notation- Simple
LIST
andSTRUCT
creation
Join Types
Trailing Commas
DuckDB allows trailing commas,
both when listing entities (e.g., column and table names) and when constructing LIST
items.
For example, the following query works:
SELECT
42 AS x,
['a', 'b', 'c',] AS y,
'hello world' AS z,
;
Related Blog Posts
- “Friendlier SQL with DuckDB” blog post
- “Even Friendlier SQL with DuckDB” blog post
- “SQL Gymnastics: Bending SQL into Flexible New Shapes” blog post