- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
DuckDB can query multiple different types of Apache Arrow objects.
Apache Arrow Tables
Arrow Tables stored in local variables can be queried as if they are regular tables within DuckDB.
import duckdb
import pyarrow as pa
# connect to an in-memory database
con = duckdb.connect()
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# query the Apache Arrow Table "my_arrow_table" and return as an Arrow Table
results = con.execute("SELECT * FROM my_arrow_table WHERE i = 2").arrow()
Apache Arrow Datasets
Arrow Datasets stored as variables can also be queried as if they were regular tables. Datasets are useful to point towards directories of Parquet files to analyze large datasets. DuckDB will push column selections and row filters down into the dataset scan operation so that only the necessary data is pulled into memory.
import duckdb
import pyarrow as pa
import tempfile
import pathlib
import pyarrow.parquet as pq
import pyarrow.dataset as ds
# connect to an in-memory database
con = duckdb.connect()
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# create example Parquet files and save in a folder
base_path = pathlib.Path(tempfile.gettempdir())
(base_path / "parquet_folder").mkdir(exist_ok = True)
pq.write_to_dataset(my_arrow_table, str(base_path / "parquet_folder"))
# link to Parquet files using an Arrow Dataset
my_arrow_dataset = ds.dataset(str(base_path / 'parquet_folder/'))
# query the Apache Arrow Dataset "my_arrow_dataset" and return as an Arrow Table
results = con.execute("SELECT * FROM my_arrow_dataset WHERE i = 2").arrow()
Apache Arrow Scanners
Arrow Scanners stored as variables can also be queried as if they were regular tables. Scanners read over a dataset and select specific columns or apply row-wise filtering. This is similar to how DuckDB pushes column selections and filters down into an Arrow Dataset, but using Arrow compute operations instead. Arrow can use asynchronous IO to quickly access files.
import duckdb
import pyarrow as pa
import tempfile
import pathlib
import pyarrow.parquet as pq
import pyarrow.dataset as ds
import pyarrow.compute as pc
# connect to an in-memory database
con = duckdb.connect()
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# create example Parquet files and save in a folder
base_path = pathlib.Path(tempfile.gettempdir())
(base_path / "parquet_folder").mkdir(exist_ok = True)
pq.write_to_dataset(my_arrow_table, str(base_path / "parquet_folder"))
# link to Parquet files using an Arrow Dataset
my_arrow_dataset = ds.dataset(str(base_path / 'parquet_folder/'))
# define the filter to be applied while scanning
# equivalent to "WHERE i = 2"
scanner_filter = (pc.field("i") == pc.scalar(2))
arrow_scanner = ds.Scanner.from_dataset(my_arrow_dataset, filter = scanner_filter)
# query the Apache Arrow scanner "arrow_scanner" and return as an Arrow Table
results = con.execute("SELECT * FROM arrow_scanner").arrow()
Apache Arrow RecordBatchReaders
Arrow RecordBatchReaders are a reader for Arrow's streaming binary format and can also be queried directly as if they were tables. This streaming format is useful when sending Arrow data for tasks like interprocess communication or communicating between language runtimes.
import duckdb
import pyarrow as pa
# connect to an in-memory database
con = duckdb.connect()
my_recordbatch = pa.RecordBatch.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
my_recordbatchreader = pa.ipc.RecordBatchReader.from_batches(my_recordbatch.schema, [my_recordbatch])
# query the Apache Arrow RecordBatchReader "my_recordbatchreader" and return as an Arrow Table
results = con.execute("SELECT * FROM my_recordbatchreader WHERE i = 2").arrow()