- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Extension Versioning
Just like DuckDB itself, DuckDB extensions have a version. This version can be used by users to determine which features are available in the extension they have installed, and by developers to understand bug reports. DuckDB extensions can be versioned in different ways:
Extensions whose source lives in DuckDB's main repository (in-tree extensions) are tagged with the short git hash of the repository.
For example, the parquet extension is built into DuckDB version v0.10.3
(which has commit 70fd6a8a24
):
SELECT extension_name, extension_version, install_mode
FROM duckdb_extensions()
WHERE extension_name='parquet';
extension_name | extension_version | install_mode |
---|---|---|
parquet | 70fd6a8a24 | STATICALLY_LINKED |
Extensions whose source lives in a separate repository (out-of-tree extensions) have their own version. This version is either
the short git hash of the separate repository, or the git version tag in Semantic Versioning format.
For example, in DuckDB version v0.10.3
, the azure extension could be versioned as follows:
SELECT extension_name, extension_version, install_mode
FROM duckdb_extensions()
WHERE extension_name = 'azure';
extension_name | extension_version | install_mode |
---|---|---|
azure | 49b63dc | REPOSITORY |
Updating Extensions
This feature was introduced in DuckDB 0.10.3.
DuckDB has a dedicated statement that will automatically update all extensions to their latest version. The output will give the user information on which extensions were updated to/from which version. For example:
UPDATE EXTENSIONS;
extension_name | repository | update_result | previous_version | current_version |
---|---|---|---|---|
httpfs | core | NO_UPDATE_AVAILABLE | 70fd6a8a24 | 70fd6a8a24 |
delta | core | UPDATED | d9e5cc1 | 04c61e4 |
azure | core | NO_UPDATE_AVAILABLE | 49b63dc | 49b63dc |
aws | core_nightly | NO_UPDATE_AVAILABLE | 42c78d3 | 42c78d3 |
Note that DuckDB will look for updates in the source repository for each extension. So if an extension was installed from
core_nightly
, it will be updated with the latest nightly build.
The update statement can also be provided with a list of specific extensions to update:
UPDATE EXTENSIONS (httpfs, azure);
extension_name | repository | update_result | previous_version | current_version |
---|---|---|---|---|
httpfs | core | NO_UPDATE_AVAILABLE | 70fd6a8a24 | 70fd6a8a24 |
azure | core | NO_UPDATE_AVAILABLE | 49b63dc | 49b63dc |
Target DuckDB Version
Currently, when extensions are compiled, they are tied to a specific version of DuckDB. What this means is that, for example, an extension binary compiled for v0.10.3 does not work for v1.0.0. In most cases, this will not cause any issues and is fully transparent; DuckDB will automatically ensure it installs the correct binary for its version. For extension developers, this means that they must ensure that new binaries are created whenever a new version of DuckDB is released. However, note that DuckDB provides an extension template that makes this fairly simple.