视频视觉变换器 (ViViT)
概述
Vivit模型由Anurag Arnab、Mostafa Dehghani、Georg Heigold、Chen Sun、Mario Lučić和Cordelia Schmid在ViViT: A Video Vision Transformer中提出。 该论文提出了首批成功的基于纯Transformer的视频理解模型之一。
论文的摘要如下:
我们提出了基于纯Transformer的视频分类模型,借鉴了这类模型在图像分类中的最新成功经验。我们的模型从输入视频中提取时空标记,然后通过一系列Transformer层进行编码。为了处理视频中遇到的长序列标记,我们提出了几种高效的模型变体,这些变体分解了输入的空间和时间维度。尽管基于Transformer的模型通常只在有大量训练数据集时才有效,但我们展示了如何在训练过程中有效地正则化模型,并利用预训练的图像模型在相对较小的数据集上进行训练。我们进行了全面的消融研究,并在多个视频分类基准测试中取得了最先进的结果,包括Kinetics 400和600、Epic Kitchens、Something-Something v2和Moments in Time,超越了基于深度3D卷积网络的先前方法。
该模型由jegormeister贡献。原始代码(用JAX编写)可以在这里找到。
使用缩放点积注意力 (SDPA)
PyTorch 包含一个原生的缩放点积注意力(SDPA)操作符,作为 torch.nn.functional
的一部分。这个函数
包含了几种实现,可以根据输入和使用的硬件进行应用。更多信息请参阅
官方文档
或 GPU 推理
页面。
默认情况下,当有可用实现时,SDPA 用于 torch>=2.1.1
,但你也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
来明确请求使用 SDPA。
from transformers import VivitModel
model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400", attn_implementation="sdpa", torch_dtype=torch.float16)
...
为了获得最佳加速效果,我们建议以半精度加载模型(例如 torch.float16
或 torch.bfloat16
)。
在本地基准测试(A100-40GB,PyTorch 2.3.0,操作系统 Ubuntu 22.04)中,使用float32
和google/vivit-b-16x2-kinetics400
模型,我们在推理过程中看到了以下加速效果。
训练
训练步数 | 批量大小 | 是否使用cuda | 加速百分比 (%) | Eager峰值内存 (MB) | sdpa峰值内存 (MB) | 内存节省百分比 (%) |
---|---|---|---|---|---|---|
100 | 1 | True | 7.122 | 2575.28 | 5932.54 | 130.364 |
推理
批次数量 | 批次大小 | 是否使用cuda | 是否使用半精度 | 加速百分比 (%) | 内存急切 (MB) | 内存BT (MB) | 内存节省百分比 (%) |
---|---|---|---|---|---|---|---|
20 | 1 | True | False | 15.422 | 715.807 | 317.079 | 125.75 |
20 | 2 | True | False | 17.146 | 1234.75 | 447.175 | 176.122 |
20 | 4 | True | False | 18.093 | 2275.82 | 709.864 | 220.6 |
20 | 8 | True | False | 19.284 | 4358.19 | 1233.24 | 253.393 |
VivitConfig
类 transformers.VivitConfig
< source >( image_size = 224 num_frames = 32 tubelet_size = [2, 16, 16] num_channels = 3 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_fast' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-06 qkv_bias = True **kwargs )
参数
- image_size (
int
, optional, 默认为 224) — 每张图片的大小(分辨率)。 - num_frames (
int
, optional, defaults to 32) — 每个视频中的帧数。 - tubelet_size (
List[int]
, 可选, 默认为[2, 16, 16]
) — 每个tubelet的大小(分辨率)。 - num_channels (
int
, optional, defaults to 3) — 输入通道的数量。 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, optional, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, optional, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。 - hidden_act (
str
或function
, 可选, 默认为"gelu_fast"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
,"relu"
,"selu"
,"gelu_fast"
和"gelu_new"
. - hidden_dropout_prob (
float
, optional, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, 默认为 0.0) — 注意力概率的丢弃比例。 - initializer_range (
float
, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-06) — 层归一化层使用的epsilon值。 - qkv_bias (
bool
, optional, defaults toTrue
) — 是否向查询、键和值添加偏置。
这是用于存储VivitModel配置的配置类。它用于根据指定的参数实例化ViViT模型,定义模型架构。使用默认值实例化配置将产生类似于ViViT google/vivit-b-16x2-kinetics400架构的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import VivitConfig, VivitModel
>>> # Initializing a ViViT google/vivit-b-16x2-kinetics400 style configuration
>>> configuration = VivitConfig()
>>> # Initializing a model (with random weights) from the google/vivit-b-16x2-kinetics400 style configuration
>>> model = VivitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
VivitImageProcessor
类 transformers.VivitImageProcessor
< source >( do_resize: bool = True size: typing.Dict[str, int] = None resample: Resampling =
参数
- do_resize (
bool
, 可选, 默认为True
) — 是否将图像的(高度,宽度)尺寸调整为指定的size
。可以在preprocess
方法中通过do_resize
参数覆盖此设置。 - size (
Dict[str, int]
optional, defaults to{"shortest_edge" -- 256}
): 调整大小后输出图像的尺寸。图像的短边将被调整为size["shortest_edge"]
,同时保持原始图像的宽高比。可以在preprocess
方法中通过size
覆盖此设置。 - resample (
PILImageResampling
, 可选, 默认为Resampling.BILINEAR
) — 如果调整图像大小,则使用的重采样过滤器。可以在preprocess
方法中通过resample
参数覆盖。 - do_center_crop (
bool
, 可选, 默认为True
) — 是否将图像中心裁剪到指定的crop_size
。可以通过preprocess
方法中的do_center_crop
参数进行覆盖。 - crop_size (
Dict[str, int]
, 可选, 默认为{"height" -- 224, "width": 224}
): 应用中心裁剪后的图像大小。可以在preprocess
方法中通过crop_size
参数覆盖。 - do_rescale (
bool
, 可选, 默认为True
) — 是否通过指定的比例rescale_factor
重新缩放图像。可以在preprocess
方法中通过do_rescale
参数覆盖此设置。 - rescale_factor (
int
或float
, 可选, 默认为1/127.5
) — 定义在重新缩放图像时使用的比例因子。可以在preprocess
方法中通过rescale_factor
参数覆盖此值。 - offset (
bool
, 可选, 默认为True
) — 是否在负方向和正方向上缩放图像。可以在preprocess
方法中被offset
覆盖。 - do_normalize (
bool
, 可选, 默认为True
) — 是否对图像进行归一化。可以在preprocess
方法中通过do_normalize
参数进行覆盖。 - image_mean (
float
或List[float]
, 可选, 默认为IMAGENET_STANDARD_MEAN
) — 如果对图像进行归一化,则使用的均值。这是一个浮点数或与图像通道数长度相同的浮点数列表。可以通过preprocess
方法中的image_mean
参数进行覆盖。 - image_std (
float
或List[float]
, 可选, 默认为IMAGENET_STANDARD_STD
) — 如果对图像进行归一化,则使用的标准差。这是一个浮点数或与图像通道数长度相同的浮点数列表。可以通过preprocess
方法中的image_std
参数进行覆盖。
构建一个Vivit图像处理器。
预处理
< source >( videos: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: bool = None size: typing.Dict[str, int] = None resample: Resampling = None do_center_crop: bool = None crop_size: typing.Dict[str, int] = None do_rescale: bool = None rescale_factor: float = None offset: bool = None do_normalize: bool = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: ChannelDimension =
参数
- 视频 (
ImageInput
) — 要预处理的视频帧。期望输入单个或批量的视频帧,像素值范围从0到255。如果传入的帧像素值在0到1之间,请设置do_rescale=False
. - do_resize (
bool
, optional, defaults toself.do_resize
) — 是否调整图像大小. - size (
Dict[str, int]
, 可选, 默认为self.size
) — 应用调整大小后的图像尺寸。 - resample (
PILImageResampling
, 可选, 默认为self.resample
) — 如果调整图像大小,则使用的重采样过滤器。这可以是枚举PILImageResampling
中的一个,只有在do_resize
设置为True
时才会生效。 - do_center_crop (
bool
, optional, defaults toself.do_centre_crop
) — 是否对图像进行中心裁剪。 - crop_size (
Dict[str, int]
, optional, defaults toself.crop_size
) — 应用中心裁剪后的图像大小。 - do_rescale (
bool
, 可选, 默认为self.do_rescale
) — 是否在offset
为True
时将图像值重新缩放到[-1 - 1]
之间,否则缩放到[0, 1]
之间。 - rescale_factor (
float
, optional, defaults toself.rescale_factor
) — 如果do_rescale
设置为True
,则用于重新缩放图像的重新缩放因子。 - offset (
bool
, 可选, 默认为self.offset
) — 是否在正负两个方向上缩放图像。 - do_normalize (
bool
, 可选, 默认为self.do_normalize
) — 是否对图像进行归一化处理. - image_mean (
float
或List[float]
, 可选, 默认为self.image_mean
) — 图像均值. - image_std (
float
orList[float]
, optional, defaults toself.image_std
) — 图像标准差. - return_tensors (
str
或TensorType
, 可选) — 返回的张量类型。可以是以下之一:- 未设置:返回一个
np.ndarray
列表。 TensorType.TENSORFLOW
或'tf'
:返回一个类型为tf.Tensor
的批次。TensorType.PYTORCH
或'pt'
:返回一个类型为torch.Tensor
的批次。TensorType.NUMPY
或'np'
:返回一个类型为np.ndarray
的批次。TensorType.JAX
或'jax'
:返回一个类型为jax.numpy.ndarray
的批次。
- 未设置:返回一个
- data_format (
ChannelDimension
或str
, 可选, 默认为ChannelDimension.FIRST
) — 输出图像的通道维度格式。可以是以下之一:ChannelDimension.FIRST
: 图像格式为 (num_channels, height, width)。ChannelDimension.LAST
: 图像格式为 (height, width, num_channels)。- 未设置:使用输入图像的推断通道维度格式。
- input_data_format (
ChannelDimension
或str
, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:"channels_first"
或ChannelDimension.FIRST
: 图像格式为 (num_channels, height, width)。"channels_last"
或ChannelDimension.LAST
: 图像格式为 (height, width, num_channels)。"none"
或ChannelDimension.NONE
: 图像格式为 (height, width)。
预处理一张图像或一批图像。
VivitModel
类 transformers.VivitModel
< source >( config add_pooling_layer = True )
参数
- config (VivitConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的ViViT Transformer模型输出原始隐藏状态,没有任何特定的头部。 此模型是PyTorch torch.nn.Module 的子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_frames, num_channels, height, width)
) — 像素值。像素值可以使用VivitImageProcessor获取。详情请参见 VivitImageProcessor.preprocess(). - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
, optional,False
) — 是否插值预训练的位置编码. - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(VivitConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。
VivitModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import av
>>> import numpy as np
>>> from transformers import VivitImageProcessor, VivitModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 32 frames
>>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container=container, indices=indices)
>>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
>>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400")
>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 3137, 768]
VivitForVideoClassification
类 transformers.VivitForVideoClassification
< source >( config )
参数
- config (VivitConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
ViViT Transformer 模型,顶部带有视频分类头(在 [CLS] 标记的最终隐藏状态之上的线性层),例如用于 Kinetics-400。
请注意,通过在模型的前向传播中将interpolate_pos_encoding
设置为True
,可以在比训练时更高分辨率的图像上微调ViT。这将把预训练的位置嵌入插值到更高的分辨率。
该模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_frames, num_channels, height, width)
) — 像素值。像素值可以使用VivitImageProcessor获取。详情请参见 VivitImageProcessor.preprocess(). - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
, optional,False
) — 是否插值预训练的位置编码. - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.ImageClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(VivitConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个阶段的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每个阶段输出的隐藏状态(也称为特征图)。 -
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每个层一个)形状为(batch_size, num_heads, patch_size, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
VivitForVideoClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import av
>>> import numpy as np
>>> import torch
>>> from transformers import VivitImageProcessor, VivitForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 32 frames
>>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container=container, indices=indices)
>>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
>>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400")
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... logits = outputs.logits
>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
LABEL_116