正态性

在 Colab 中打开

在许多情况下,仅最低层次的时间序列(底层时间序列)可用。HierarchicalForecast具有创建所有层次时间序列的工具,并且还允许您计算所有层次的预测区间。在本笔记本中,我们将看到如何做到这一点。

%%capture
!pip install hierarchicalforecast statsforecast
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 计算基础预测无一致性
from statsforecast.models import AutoARIMA
from statsforecast.core import StatsForecast

#获取分层协调方法及评估
from hierarchicalforecast.methods import BottomUp, MinTrace
from hierarchicalforecast.utils import aggregate, HierarchicalPlot
from hierarchicalforecast.core import HierarchicalReconciliation
from hierarchicalforecast.evaluation import HierarchicalEvaluation
/Users/fedex/miniconda3/envs/hierarchicalforecast/lib/python3.10/site-packages/statsforecast/core.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from tqdm.autonotebook import tqdm

汇总底部时间序列

在这个例子中,我们将使用旅游数据集,该数据集来自预测:原则与实践这本书。该数据集仅包含最低级别的时间序列,因此我们需要为所有层级创建时间序列。

Y_df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/tourism.csv')
Y_df = Y_df.rename({'Trips': 'y', 'Quarter': 'ds'}, axis=1)
Y_df.insert(0, 'Country', 'Australia')
Y_df = Y_df[['Country', 'Region', 'State', 'Purpose', 'ds', 'y']]
Y_df['ds'] = Y_df['ds'].str.replace(r'(\d+) (Q\d)', r'\1-\2', regex=True)
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df.head()
Country Region State Purpose ds y
0 Australia Adelaide South Australia Business 1998-01-01 135.077690
1 Australia Adelaide South Australia Business 1998-04-01 109.987316
2 Australia Adelaide South Australia Business 1998-07-01 166.034687
3 Australia Adelaide South Australia Business 1998-10-01 127.160464
4 Australia Adelaide South Australia Business 1999-01-01 137.448533

数据集可以按以下非严格层次结构进行分组。

spec = [
    ['Country'],
    ['Country', 'State'], 
    ['Country', 'Purpose'], 
    ['Country', 'State', 'Region'], 
    ['Country', 'State', 'Purpose'], 
    ['Country', 'State', 'Region', 'Purpose']
]

使用HierarchicalForecast中的aggregate函数,我们可以生成: 1. Y_df:分层结构系列 \(\mathbf{y}_{[a,b]\tau}\) 2. S_df:包含聚合约束的数据框 \(S_{[a,b]}\) 3. tags:一个包含符合每个聚合级别的’unique_ids’的列表。

Y_df, S_df, tags = aggregate(df=Y_df, spec=spec)
Y_df = Y_df.reset_index()
/Users/fedex/miniconda3/envs/hierarchicalforecast/lib/python3.10/site-packages/sklearn/preprocessing/_encoders.py:828: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.
  warnings.warn(
Y_df.head()
unique_id ds y
0 Australia 1998-01-01 23182.197269
1 Australia 1998-04-01 20323.380067
2 Australia 1998-07-01 19826.640511
3 Australia 1998-10-01 20830.129891
4 Australia 1999-01-01 22087.353380
S_df.iloc[:5, :5]
Australia/ACT/Canberra/Business Australia/ACT/Canberra/Holiday Australia/ACT/Canberra/Other Australia/ACT/Canberra/Visiting Australia/New South Wales/Blue Mountains/Business
Australia 1.0 1.0 1.0 1.0 1.0
Australia/ACT 1.0 1.0 1.0 1.0 0.0
Australia/New South Wales 0.0 0.0 0.0 0.0 1.0
Australia/Northern Territory 0.0 0.0 0.0 0.0 0.0
Australia/Queensland 0.0 0.0 0.0 0.0 0.0
tags['Country/Purpose']
array(['Australia/Business', 'Australia/Holiday', 'Australia/Other',
       'Australia/Visiting'], dtype=object)

我们可以使用 HierarchicalPlot 类可视化 S 矩阵和数据,如下所示。

hplot = HierarchicalPlot(S=S_df, tags=tags)
hplot.plot_summing_matrix()

hplot.plot_hierarchically_linked_series(
    bottom_series='Australia/ACT/Canberra/Holiday',
    Y_df=Y_df.set_index('unique_id')
)

划分训练/测试集

我们使用最后两年(8个季度)作为测试集。

Y_test_df = Y_df.groupby('unique_id').tail(8)
Y_train_df = Y_df.drop(Y_test_df.index)
Y_test_df = Y_test_df.set_index('unique_id')
Y_train_df = Y_train_df.set_index('unique_id')
Y_train_df.groupby('unique_id').size()
unique_id
Australia                                                72
Australia/ACT                                            72
Australia/ACT/Business                                   72
Australia/ACT/Canberra                                   72
Australia/ACT/Canberra/Business                          72
                                                         ..
Australia/Western Australia/Experience Perth/Other       72
Australia/Western Australia/Experience Perth/Visiting    72
Australia/Western Australia/Holiday                      72
Australia/Western Australia/Other                        72
Australia/Western Australia/Visiting                     72
Length: 425, dtype: int64

计算基本预测

以下单元计算了 Y_df 中每个时间序列的 基本预测,使用了 AutoARIMA 模型。注意,Y_hat_df 包含了预测结果,但它们并不连贯。为了调整预测区间,我们需要使用 StatsForecastlevel 参数计算不连贯的区间。

fcst = StatsForecast(df=Y_train_df,
                     models=[AutoARIMA(season_length=4)], 
                     freq='QS', n_jobs=-1)
Y_hat_df = fcst.forecast(h=8, fitted=True, level=[80, 90])
Y_fitted_df = fcst.forecast_fitted_values()

协调预测

下面的单元格使用 HierarchicalReconciliation 类使之前的预测一致。由于层级结构不是严格的,我们不能使用诸如 TopDownMiddleOut 的方法。在此例中,我们使用 BottomUpMinTrace。如果您想计算预测区间,您必须如下使用 level 参数。

reconcilers = [
    BottomUp(),
    MinTrace(method='mint_shrink'),
    MinTrace(method='ols')
]
hrec = HierarchicalReconciliation(reconcilers=reconcilers)
Y_rec_df = hrec.reconcile(Y_hat_df=Y_hat_df, Y_df=Y_fitted_df, 
                          S=S_df, tags=tags, level=[80, 90])

数据框 Y_rec_df 包含了调和后的预测结果。

Y_rec_df.head()
ds AutoARIMA AutoARIMA-lo-90 AutoARIMA-lo-80 AutoARIMA-hi-80 AutoARIMA-hi-90 AutoARIMA/BottomUp AutoARIMA/BottomUp-lo-90 AutoARIMA/BottomUp-lo-80 AutoARIMA/BottomUp-hi-80 ... AutoARIMA/MinTrace_method-mint_shrink AutoARIMA/MinTrace_method-mint_shrink-lo-90 AutoARIMA/MinTrace_method-mint_shrink-lo-80 AutoARIMA/MinTrace_method-mint_shrink-hi-80 AutoARIMA/MinTrace_method-mint_shrink-hi-90 AutoARIMA/MinTrace_method-ols AutoARIMA/MinTrace_method-ols-lo-90 AutoARIMA/MinTrace_method-ols-lo-80 AutoARIMA/MinTrace_method-ols-hi-80 AutoARIMA/MinTrace_method-ols-hi-90
unique_id
Australia 2016-01-01 26212.554688 24694.224609 25029.580078 27395.527344 27730.884766 24368.099609 23674.076441 23827.366706 24908.832513 ... 25205.749397 24453.417115 24619.586229 25791.912565 25958.081679 26059.047512 24978.608364 25217.247087 26900.847937 27139.486661
Australia 2016-04-01 25033.667969 23324.066406 23701.669922 26365.666016 26743.269531 22395.921875 21629.482078 21798.767146 22993.076604 ... 23720.833190 22915.772233 23093.587632 24348.078748 24525.894148 24769.464257 23554.946551 23823.199470 25715.729045 25983.981963
Australia 2016-07-01 24507.027344 22625.500000 23041.076172 25972.978516 26388.554688 22004.169922 21182.945074 21364.330624 22644.009219 ... 23167.123691 22316.298074 22504.221604 23830.025777 24017.949308 24205.855344 22870.661086 23165.568073 25246.142616 25541.049603
Australia 2016-10-01 25598.929688 23559.919922 24010.281250 27187.578125 27637.937500 22325.056641 21456.892977 21648.645996 23001.467285 ... 23982.251913 23087.313715 23284.980478 24679.523348 24877.190111 25271.861336 23825.782311 24145.180634 26398.542038 26717.940362
Australia 2017-01-01 26982.578125 24651.535156 25166.396484 28798.757812 29313.619141 23258.001953 22296.178714 22508.618508 24007.385398 ... 25002.243615 24016.747195 24234.415731 25770.071498 25987.740034 26611.143736 24959.636647 25324.408272 27897.879201 28262.650825

5 rows × 21 columns

绘制预测图

然后我们可以使用以下函数绘制概率预测。

plot_df = pd.concat([Y_df.set_index(['unique_id', 'ds']), 
                     Y_rec_df.set_index('ds', append=True)], axis=1)
plot_df = plot_df.reset_index('ds')

绘制单个时间序列

hplot.plot_series(
    series='Australia',
    Y_df=plot_df, 
    models=['y', 'AutoARIMA', 'AutoARIMA/MinTrace_method-ols'],
    level=[80]
)

# 由于我们正在绘制一个底部时间序列
# 概率预报和平均预报
# 是相同的
hplot.plot_series(
    series='Australia/Western Australia/Experience Perth/Visiting',
    Y_df=plot_df, 
    models=['y', 'AutoARIMA', 'AutoARIMA/BottomUp'],
    level=[80]
)

绘制层次关联的时间序列

hplot.plot_hierarchically_linked_series(
    bottom_series='Australia/Western Australia/Experience Perth/Visiting',
    Y_df=plot_df, 
    models=['y', 'AutoARIMA', 'AutoARIMA/MinTrace_method-ols', 'AutoARIMA/BottomUp'],
    level=[80]
)

# ACT 仅拥有堪培拉
hplot.plot_hierarchically_linked_series(
    bottom_series='Australia/ACT/Canberra/Other',
    Y_df=plot_df, 
    models=['y', 'AutoARIMA/MinTrace_method-mint_shrink'],
    level=[80, 90]
)

参考文献

If you find the code useful, please ⭐ us on Github