jax._src.scipy.stats.laplace 源代码

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from jax import lax
from jax._src.lax.lax import _const as _lax_const
from jax._src.numpy.util import promote_args_inexact
from jax._src.typing import Array, ArrayLike


[文档] def logpdf(x: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: r"""Laplace log probability distribution function. JAX implementation of :obj:`scipy.stats.laplace` ``logpdf``. The Laplace probability distribution function is given by .. math:: f(x) = \frac{1}{2} e^{-|x|} Args: x: arraylike, value at which to evaluate the PDF loc: arraylike, distribution offset parameter scale: arraylike, distribution scale parameter Returns: array of logpdf values. See Also: - :func:`jax.scipy.stats.laplace.cdf` - :func:`jax.scipy.stats.laplace.pdf` """ x, loc, scale = promote_args_inexact("laplace.logpdf", x, loc, scale) two = _lax_const(x, 2) linear_term = lax.div(lax.abs(lax.sub(x, loc)), scale) return lax.neg(lax.add(linear_term, lax.log(lax.mul(two, scale))))
[文档] def pdf(x: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: r"""Laplace probability distribution function. JAX implementation of :obj:`scipy.stats.laplace` ``pdf``. The Laplace probability distribution function is given by .. math:: f(x) = \frac{1}{2} e^{-|x|} Args: x: arraylike, value at which to evaluate the PDF loc: arraylike, distribution offset parameter scale: arraylike, distribution scale parameter Returns: array of pdf values. See Also: - :func:`jax.scipy.stats.laplace.cdf` - :func:`jax.scipy.stats.laplace.logpdf` """ return lax.exp(logpdf(x, loc, scale))
[文档] def cdf(x: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: r"""Laplace cumulative distribution function. JAX implementation of :obj:`scipy.stats.laplace` ``cdf``. The cdf is defined as .. math:: f_{cdf}(x, k) = \int_{-\infty}^x f_{pdf}(y, k)\mathrm{d}y where :math:`f_{pdf}` is the probability density function, :func:`jax.scipy.stats.laplace.pdf`. Args: x: arraylike, value at which to evaluate the CDF loc: arraylike, distribution offset parameter scale: arraylike, distribution scale parameter Returns: array of cdf values. See Also: - :func:`jax.scipy.stats.laplace.pdf` - :func:`jax.scipy.stats.laplace.logpdf` """ x, loc, scale = promote_args_inexact("laplace.cdf", x, loc, scale) half = _lax_const(x, 0.5) one = _lax_const(x, 1) zero = _lax_const(x, 0) diff = lax.div(lax.sub(x, loc), scale) return lax.select(lax.le(diff, zero), lax.mul(half, lax.exp(diff)), lax.sub(one, lax.mul(half, lax.exp(lax.neg(diff)))))