jax.example_libraries.stax 源代码

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Stax is a small but flexible neural net specification library from scratch.

You likely do not mean to import this module! Stax is intended as an example
library only. There are a number of other much more fully-featured neural
network libraries for JAX, including `Flax`_ from Google, and `Haiku`_ from
DeepMind.

.. _Haiku: https://github.com/deepmind/dm-haiku
.. _Flax: https://github.com/google/flax
"""

import functools
import operator as op

from jax import lax
from jax import random
import jax.numpy as jnp

from jax.nn import (relu, log_softmax, softmax, softplus, sigmoid, elu,
                    leaky_relu, selu, gelu, standardize)
from jax.nn.initializers import glorot_normal, normal, ones, zeros

# aliases for backwards compatibility
glorot = glorot_normal
randn = normal
logsoftmax = log_softmax

# Following the convention used in Keras and tf.layers, we use CamelCase for the
# names of layer constructors, like Conv and Relu, while using snake_case for
# other functions, like lax.conv and relu.

# Each layer constructor function returns an (init_fun, apply_fun) pair, where
#   init_fun: takes an rng key and an input shape and returns an
#     (output_shape, params) pair,
#   apply_fun: takes params, inputs, and an rng key and applies the layer.


[文档] def Dense(out_dim, W_init=glorot_normal(), b_init=normal()): """Layer constructor function for a dense (fully-connected) layer.""" def init_fun(rng, input_shape): output_shape = input_shape[:-1] + (out_dim,) k1, k2 = random.split(rng) W, b = W_init(k1, (input_shape[-1], out_dim)), b_init(k2, (out_dim,)) return output_shape, (W, b) def apply_fun(params, inputs, **kwargs): W, b = params return jnp.dot(inputs, W) + b return init_fun, apply_fun
[文档] def GeneralConv(dimension_numbers, out_chan, filter_shape, strides=None, padding='VALID', W_init=None, b_init=normal(1e-6)): """Layer construction function for a general convolution layer.""" lhs_spec, rhs_spec, out_spec = dimension_numbers one = (1,) * len(filter_shape) strides = strides or one W_init = W_init or glorot_normal(rhs_spec.index('I'), rhs_spec.index('O')) def init_fun(rng, input_shape): filter_shape_iter = iter(filter_shape) kernel_shape = [out_chan if c == 'O' else input_shape[lhs_spec.index('C')] if c == 'I' else next(filter_shape_iter) for c in rhs_spec] output_shape = lax.conv_general_shape_tuple( input_shape, kernel_shape, strides, padding, dimension_numbers) bias_shape = [out_chan if c == 'C' else 1 for c in out_spec] k1, k2 = random.split(rng) W, b = W_init(k1, kernel_shape), b_init(k2, bias_shape) return output_shape, (W, b) def apply_fun(params, inputs, **kwargs): W, b = params return lax.conv_general_dilated(inputs, W, strides, padding, one, one, dimension_numbers=dimension_numbers) + b return init_fun, apply_fun
Conv = functools.partial(GeneralConv, ('NHWC', 'HWIO', 'NHWC'))
[文档] def GeneralConvTranspose(dimension_numbers, out_chan, filter_shape, strides=None, padding='VALID', W_init=None, b_init=normal(1e-6)): """Layer construction function for a general transposed-convolution layer.""" lhs_spec, rhs_spec, out_spec = dimension_numbers one = (1,) * len(filter_shape) strides = strides or one W_init = W_init or glorot_normal(rhs_spec.index('I'), rhs_spec.index('O')) def init_fun(rng, input_shape): filter_shape_iter = iter(filter_shape) kernel_shape = [out_chan if c == 'O' else input_shape[lhs_spec.index('C')] if c == 'I' else next(filter_shape_iter) for c in rhs_spec] output_shape = lax.conv_transpose_shape_tuple( input_shape, kernel_shape, strides, padding, dimension_numbers) bias_shape = [out_chan if c == 'C' else 1 for c in out_spec] k1, k2 = random.split(rng) W, b = W_init(k1, kernel_shape), b_init(k2, bias_shape) return output_shape, (W, b) def apply_fun(params, inputs, **kwargs): W, b = params return lax.conv_transpose(inputs, W, strides, padding, dimension_numbers=dimension_numbers) + b return init_fun, apply_fun
Conv1DTranspose = functools.partial(GeneralConvTranspose, ('NHC', 'HIO', 'NHC')) ConvTranspose = functools.partial(GeneralConvTranspose, ('NHWC', 'HWIO', 'NHWC'))
[文档] def BatchNorm(axis=(0, 1, 2), epsilon=1e-5, center=True, scale=True, beta_init=zeros, gamma_init=ones): """Layer construction function for a batch normalization layer.""" _beta_init = lambda rng, shape: beta_init(rng, shape) if center else () _gamma_init = lambda rng, shape: gamma_init(rng, shape) if scale else () axis = (axis,) if jnp.isscalar(axis) else axis def init_fun(rng, input_shape): shape = tuple(d for i, d in enumerate(input_shape) if i not in axis) k1, k2 = random.split(rng) beta, gamma = _beta_init(k1, shape), _gamma_init(k2, shape) return input_shape, (beta, gamma) def apply_fun(params, x, **kwargs): beta, gamma = params # TODO(phawkins): jnp.expand_dims should accept an axis tuple. # (https://github.com/numpy/numpy/issues/12290) ed = tuple(None if i in axis else slice(None) for i in range(jnp.ndim(x))) z = standardize(x, axis, epsilon=epsilon) if center and scale: return gamma[ed] * z + beta[ed] if center: return z + beta[ed] if scale: return gamma[ed] * z return z return init_fun, apply_fun
[文档] def elementwise(fun, **fun_kwargs): """Layer that applies a scalar function elementwise on its inputs.""" init_fun = lambda rng, input_shape: (input_shape, ()) apply_fun = lambda params, inputs, **kwargs: fun(inputs, **fun_kwargs) return init_fun, apply_fun
Tanh = elementwise(jnp.tanh) Relu = elementwise(relu) Exp = elementwise(jnp.exp) LogSoftmax = elementwise(log_softmax, axis=-1) Softmax = elementwise(softmax, axis=-1) Softplus = elementwise(softplus) Sigmoid = elementwise(sigmoid) Elu = elementwise(elu) LeakyRelu = elementwise(leaky_relu) Selu = elementwise(selu) Gelu = elementwise(gelu) def _pooling_layer(reducer, init_val, rescaler=None): def PoolingLayer(window_shape, strides=None, padding='VALID', spec=None): """Layer construction function for a pooling layer.""" strides = strides or (1,) * len(window_shape) rescale = rescaler(window_shape, strides, padding) if rescaler else None if spec is None: non_spatial_axes = 0, len(window_shape) + 1 else: non_spatial_axes = spec.index('N'), spec.index('C') for i in sorted(non_spatial_axes): window_shape = window_shape[:i] + (1,) + window_shape[i:] strides = strides[:i] + (1,) + strides[i:] def init_fun(rng, input_shape): padding_vals = lax.padtype_to_pads(input_shape, window_shape, strides, padding) ones = (1,) * len(window_shape) out_shape = lax.reduce_window_shape_tuple( input_shape, window_shape, strides, padding_vals, ones, ones) return out_shape, () def apply_fun(params, inputs, **kwargs): out = lax.reduce_window(inputs, init_val, reducer, window_shape, strides, padding) return rescale(out, inputs, spec) if rescale else out return init_fun, apply_fun return PoolingLayer MaxPool = _pooling_layer(lax.max, -jnp.inf) SumPool = _pooling_layer(lax.add, 0.) def _normalize_by_window_size(dims, strides, padding): def rescale(outputs, inputs, spec): if spec is None: non_spatial_axes = 0, inputs.ndim - 1 else: non_spatial_axes = spec.index('N'), spec.index('C') spatial_shape = tuple(inputs.shape[i] for i in range(inputs.ndim) if i not in non_spatial_axes) one = jnp.ones(spatial_shape, dtype=inputs.dtype) window_sizes = lax.reduce_window(one, 0., lax.add, dims, strides, padding) for i in sorted(non_spatial_axes): window_sizes = jnp.expand_dims(window_sizes, i) return outputs / window_sizes return rescale AvgPool = _pooling_layer(lax.add, 0., _normalize_by_window_size) def Flatten(): """Layer construction function for flattening all but the leading dim.""" def init_fun(rng, input_shape): output_shape = input_shape[0], functools.reduce(op.mul, input_shape[1:], 1) return output_shape, () def apply_fun(params, inputs, **kwargs): return jnp.reshape(inputs, (inputs.shape[0], -1)) return init_fun, apply_fun Flatten = Flatten() def Identity(): """Layer construction function for an identity layer.""" init_fun = lambda rng, input_shape: (input_shape, ()) apply_fun = lambda params, inputs, **kwargs: inputs return init_fun, apply_fun Identity = Identity()
[文档] def FanOut(num): """Layer construction function for a fan-out layer.""" init_fun = lambda rng, input_shape: ([input_shape] * num, ()) apply_fun = lambda params, inputs, **kwargs: [inputs] * num return init_fun, apply_fun
def FanInSum(): """Layer construction function for a fan-in sum layer.""" init_fun = lambda rng, input_shape: (input_shape[0], ()) apply_fun = lambda params, inputs, **kwargs: sum(inputs) return init_fun, apply_fun FanInSum = FanInSum()
[文档] def FanInConcat(axis=-1): """Layer construction function for a fan-in concatenation layer.""" def init_fun(rng, input_shape): ax = axis % len(input_shape[0]) concat_size = sum(shape[ax] for shape in input_shape) out_shape = input_shape[0][:ax] + (concat_size,) + input_shape[0][ax+1:] return out_shape, () def apply_fun(params, inputs, **kwargs): return jnp.concatenate(inputs, axis) return init_fun, apply_fun
[文档] def Dropout(rate, mode='train'): """Layer construction function for a dropout layer with given rate.""" def init_fun(rng, input_shape): return input_shape, () def apply_fun(params, inputs, **kwargs): rng = kwargs.get('rng', None) if rng is None: msg = ("Dropout layer requires apply_fun to be called with a PRNG key " "argument. That is, instead of `apply_fun(params, inputs)`, call " "it like `apply_fun(params, inputs, rng)` where `rng` is a " "PRNG key (e.g. from `jax.random.key`).") raise ValueError(msg) if mode == 'train': keep = random.bernoulli(rng, rate, inputs.shape) return jnp.where(keep, inputs / rate, 0) else: return inputs return init_fun, apply_fun
# Composing layers via combinators
[文档] def serial(*layers): """Combinator for composing layers in serial. Args: *layers: a sequence of layers, each an (init_fun, apply_fun) pair. Returns: A new layer, meaning an (init_fun, apply_fun) pair, representing the serial composition of the given sequence of layers. """ nlayers = len(layers) init_funs, apply_funs = zip(*layers) def init_fun(rng, input_shape): params = [] for init_fun in init_funs: rng, layer_rng = random.split(rng) input_shape, param = init_fun(layer_rng, input_shape) params.append(param) return input_shape, params def apply_fun(params, inputs, **kwargs): rng = kwargs.pop('rng', None) rngs = random.split(rng, nlayers) if rng is not None else (None,) * nlayers for fun, param, rng in zip(apply_funs, params, rngs): inputs = fun(param, inputs, rng=rng, **kwargs) return inputs return init_fun, apply_fun
[文档] def parallel(*layers): """Combinator for composing layers in parallel. The layer resulting from this combinator is often used with the FanOut and FanInSum layers. Args: *layers: a sequence of layers, each an (init_fun, apply_fun) pair. Returns: A new layer, meaning an (init_fun, apply_fun) pair, representing the parallel composition of the given sequence of layers. In particular, the returned layer takes a sequence of inputs and returns a sequence of outputs with the same length as the argument `layers`. """ nlayers = len(layers) init_funs, apply_funs = zip(*layers) def init_fun(rng, input_shape): rngs = random.split(rng, nlayers) return zip(*[init(rng, shape) for init, rng, shape in zip(init_funs, rngs, input_shape)]) def apply_fun(params, inputs, **kwargs): rng = kwargs.pop('rng', None) rngs = random.split(rng, nlayers) if rng is not None else (None,) * nlayers return [f(p, x, rng=r, **kwargs) for f, p, x, r in zip(apply_funs, params, inputs, rngs)] return init_fun, apply_fun
[文档] def shape_dependent(make_layer): """Combinator to delay layer constructor pair until input shapes are known. Args: make_layer: a one-argument function that takes an input shape as an argument (a tuple of positive integers) and returns an (init_fun, apply_fun) pair. Returns: A new layer, meaning an (init_fun, apply_fun) pair, representing the same layer as returned by `make_layer` but with its construction delayed until input shapes are known. """ def init_fun(rng, input_shape): return make_layer(input_shape)[0](rng, input_shape) def apply_fun(params, inputs, **kwargs): return make_layer(inputs.shape)[1](params, inputs, **kwargs) return init_fun, apply_fun