如何创建一个自定义聊天模型类
本指南假设您熟悉以下概念:
在本指南中,我们将学习如何使用LangChain抽象创建一个自定义的聊天模型。
将您的LLM包装在标准的BaseChatModel
接口中,可以让您在现有的LangChain程序中使用您的LLM,只需进行最少的代码修改!
作为奖励,您的LLM将自动成为LangChain Runnable,并且将受益于一些开箱即用的优化(例如,通过线程池进行批处理),异步支持,astream_events
API等。
输入和输出
首先,我们需要讨论消息,这是聊天模型的输入和输出。
消息
聊天模型将消息作为输入并返回消息作为输出。
LangChain 有几个内置的消息类型:
消息类型 | 描述 |
---|---|
SystemMessage | 用于引导AI行为,通常作为输入消息序列中的第一条传递。 |
HumanMessage | 表示与聊天模型交互的人发送的消息。 |
AIMessage | 表示来自聊天模型的消息。这可以是文本或调用工具的请求。 |
FunctionMessage / ToolMessage | 用于将工具调用的结果传递回模型的消息。 |
AIMessageChunk / HumanMessageChunk / ... | 每种消息类型的块变体。 |
ToolMessage
和 FunctionMessage
严格遵循 OpenAI 的 function
和 tool
角色。
这是一个快速发展的领域,随着更多模型增加函数调用功能。预计这个模式将会有更多的补充。
from langchain_core.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
流式变体
所有的聊天消息都有一个流式变体,其名称中包含Chunk
。
from langchain_core.messages import (
AIMessageChunk,
FunctionMessageChunk,
HumanMessageChunk,
SystemMessageChunk,
ToolMessageChunk,
)
这些块在从聊天模型流式输出时使用,它们都定义了一个可加性属性!
AIMessageChunk(content="Hello") + AIMessageChunk(content=" World!")
AIMessageChunk(content='Hello World!')
基础聊天模型
让我们实现一个聊天模型,它会回显提示中最后一条消息的前n
个字符!
为此,我们将继承BaseChatModel
,并且需要实现以下内容:
方法/属性 | 描述 | 必需/可选 |
---|---|---|
_generate | 用于从提示生成聊天结果 | Required |
_llm_type (property) | 用于唯一标识模型的类型。用于日志记录。 | Required |
_identifying_params (属性) | 表示用于跟踪目的的模型参数化。 | 可选 |
_stream | 用于实现流式处理。 | Optional |
_agenerate | 用于实现原生异步方法。 | 可选 |
_astream | 用于实现_stream 的异步版本。 | 可选 |
_astream
实现使用 run_in_executor
在单独的线程中启动同步的 _stream
,如果 _stream
已实现,否则它会回退使用 _agenerate
。
如果你想重用_stream
的实现,可以使用这个技巧,但如果你能够实现原生异步的代码,那将是一个更好的解决方案,因为该代码将以更少的开销运行。
实现
from typing import Any, Dict, Iterator, List, Optional
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from pydantic import Field
class ChatParrotLink(BaseChatModel):
"""A custom chat model that echoes the first `parrot_buffer_length` characters
of the input.
When contributing an implementation to LangChain, carefully document
the model including the initialization parameters, include
an example of how to initialize the model and include any relevant
links to the underlying models documentation or API.
Example:
.. code-block:: python
model = ChatParrotLink(parrot_buffer_length=2, model="bird-brain-001")
result = model.invoke([HumanMessage(content="hello")])
result = model.batch([[HumanMessage(content="hello")],
[HumanMessage(content="world")]])
"""
model_name: str = Field(alias="model")
"""The name of the model"""
parrot_buffer_length: int
"""The number of characters from the last message of the prompt to be echoed."""
temperature: Optional[float] = None
max_tokens: Optional[int] = None
timeout: Optional[int] = None
stop: Optional[List[str]] = None
max_retries: int = 2
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Override the _generate method to implement the chat model logic.
This can be a call to an API, a call to a local model, or any other
implementation that generates a response to the input prompt.
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
# Replace this with actual logic to generate a response from a list
# of messages.
last_message = messages[-1]
tokens = last_message.content[: self.parrot_buffer_length]
ct_input_tokens = sum(len(message.content) for message in messages)
ct_output_tokens = len(tokens)
message = AIMessage(
content=tokens,
additional_kwargs={}, # Used to add additional payload to the message
response_metadata={ # Use for response metadata
"time_in_seconds": 3,
},
usage_metadata={
"input_tokens": ct_input_tokens,
"output_tokens": ct_output_tokens,
"total_tokens": ct_input_tokens + ct_output_tokens,
},
)
##
generation = ChatGeneration(message=message)
return ChatResult(generations=[generation])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Stream the output of the model.
This method should be implemented if the model can generate output
in a streaming fashion. If the model does not support streaming,
do not implement it. In that case streaming requests will be automatically
handled by the _generate method.
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
last_message = messages[-1]
tokens = str(last_message.content[: self.parrot_buffer_length])
ct_input_tokens = sum(len(message.content) for message in messages)
for token in tokens:
usage_metadata = UsageMetadata(
{
"input_tokens": ct_input_tokens,
"output_tokens": 1,
"total_tokens": ct_input_tokens + 1,
}
)
ct_input_tokens = 0
chunk = ChatGenerationChunk(
message=AIMessageChunk(content=token, usage_metadata=usage_metadata)
)
if run_manager:
# This is optional in newer versions of LangChain
# The on_llm_new_token will be called automatically
run_manager.on_llm_new_token(token, chunk=chunk)
yield chunk
# Let's add some other information (e.g., response metadata)
chunk = ChatGenerationChunk(
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
)
if run_manager:
# This is optional in newer versions of LangChain
# The on_llm_new_token will be called automatically
run_manager.on_llm_new_token(token, chunk=chunk)
yield chunk
@property
def _llm_type(self) -> str:
"""Get the type of language model used by this chat model."""
return "echoing-chat-model-advanced"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Return a dictionary of identifying parameters.
This information is used by the LangChain callback system, which
is used for tracing purposes make it possible to monitor LLMs.
"""
return {
# The model name allows users to specify custom token counting
# rules in LLM monitoring applications (e.g., in LangSmith users
# can provide per token pricing for their model and monitor
# costs for the given LLM.)
"model_name": self.model_name,
}
让我们测试一下 🧪
聊天模型将实现LangChain的标准Runnable
接口,许多LangChain抽象都支持该接口!
model = ChatParrotLink(parrot_buffer_length=3, model="my_custom_model")
model.invoke(
[
HumanMessage(content="hello!"),
AIMessage(content="Hi there human!"),
HumanMessage(content="Meow!"),
]
)
AIMessage(content='Meo', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-cf11aeb6-8ab6-43d7-8c68-c1ef89b6d78e-0', usage_metadata={'input_tokens': 26, 'output_tokens': 3, 'total_tokens': 29})
model.invoke("hello")
AIMessage(content='hel', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-618e5ed4-d611-4083-8cf1-c270726be8d9-0', usage_metadata={'input_tokens': 5, 'output_tokens': 3, 'total_tokens': 8})
model.batch(["hello", "goodbye"])
[AIMessage(content='hel', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-eea4ed7d-d750-48dc-90c0-7acca1ff388f-0', usage_metadata={'input_tokens': 5, 'output_tokens': 3, 'total_tokens': 8}),
AIMessage(content='goo', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-07cfc5c1-3c62-485f-b1e0-3d46e1547287-0', usage_metadata={'input_tokens': 7, 'output_tokens': 3, 'total_tokens': 10})]
for chunk in model.stream("cat"):
print(chunk.content, end="|")
c|a|t||
请查看模型中_astream
的实现!如果你没有实现它,那么将不会有输出流。
async for chunk in model.astream("cat"):
print(chunk.content, end="|")
c|a|t||
让我们尝试使用astream事件API,这也有助于再次确认所有回调都已实现!
async for event in model.astream_events("cat", version="v1"):
print(event)
{'event': 'on_chat_model_start', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'name': 'ChatParrotLink', 'tags': [], 'metadata': {}, 'data': {'input': 'cat'}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='c', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 3, 'output_tokens': 1, 'total_tokens': 4})}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='a', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 0, 'output_tokens': 1, 'total_tokens': 1})}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='t', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 0, 'output_tokens': 1, 'total_tokens': 1})}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={'time_in_sec': 3}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a')}, 'parent_ids': []}
{'event': 'on_chat_model_end', 'name': 'ChatParrotLink', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'data': {'output': AIMessageChunk(content='cat', additional_kwargs={}, response_metadata={'time_in_sec': 3}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 3, 'output_tokens': 3, 'total_tokens': 6})}, 'parent_ids': []}
贡献
我们感谢所有聊天模型集成的贡献。
以下是一个清单,帮助确保您的贡献被添加到LangChain中:
文档:
- 模型包含所有初始化参数的文档字符串,因为这些将在API参考中展示。
- 如果模型由服务提供支持,则模型的类文档字符串包含指向模型API的链接。
测试:
- 为覆盖的方法添加单元或集成测试。验证
invoke
、ainvoke
、batch
、stream
是否工作,如果你已经覆盖了相应的代码。
流式处理(如果您正在实现它):
- 实现_stream方法以使流式处理工作
停止令牌行为:
- 停止标记应被遵守
- 停止标记应作为响应的一部分包含
秘密API密钥:
- 如果你的模型连接到API,它可能会接受API密钥作为初始化的一部分。使用Pydantic的
SecretStr
类型来处理密钥,这样当人们打印模型时,它们不会意外地被打印出来。
识别参数:
- 在识别参数中包含一个
model_name
优化:
考虑提供原生异步支持以减少模型的额外开销!
- 提供了一个原生的异步方法
_agenerate
(由ainvoke
使用) - 提供了一个原生的异步方法
_astream
(由astream
使用)
下一步
你现在已经学会了如何创建自己的自定义聊天模型。
接下来,查看本节中的其他操作指南聊天模型,如如何让模型返回结构化输出或如何跟踪聊天模型令牌使用情况。