如何运行自定义函数
本指南假设您熟悉以下概念:
你可以使用任意函数作为Runnables。这在格式化或当你需要其他LangChain组件未提供的功能时非常有用,而用作Runnables的自定义函数被称为RunnableLambdas
。
请注意,这些函数的所有输入都需要是单个参数。如果你有一个接受多个参数的函数,你应该编写一个接受单个字典输入并将其解包为多个参数的包装器。
本指南将涵盖:
- 如何使用
RunnableLambda
构造函数和方便的@chain
装饰器从自定义函数显式创建可运行对象 - 在链中使用时,将自定义函数强制转换为可运行对象
- 如何在自定义函数中接受和使用运行元数据
- 如何通过让自定义函数返回生成器来进行流处理
使用构造函数
下面,我们明确地使用RunnableLambda
构造函数来包装我们的自定义逻辑:
%pip install -qU langchain langchain_openai
import os
from getpass import getpass
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass()
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI
def length_function(text):
return len(text)
def _multiple_length_function(text1, text2):
return len(text1) * len(text2)
def multiple_length_function(_dict):
return _multiple_length_function(_dict["text1"], _dict["text2"])
model = ChatOpenAI()
prompt = ChatPromptTemplate.from_template("what is {a} + {b}")
chain1 = prompt | model
chain = (
{
"a": itemgetter("foo") | RunnableLambda(length_function),
"b": {"text1": itemgetter("foo"), "text2": itemgetter("bar")}
| RunnableLambda(multiple_length_function),
}
| prompt
| model
)
chain.invoke({"foo": "bar", "bar": "gah"})
AIMessage(content='3 + 9 equals 12.', response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 14, 'total_tokens': 22}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-73728de3-e483-49e3-ad54-51bd9570e71a-0')
便利的 @chain
装饰器
你也可以通过添加一个@chain
装饰器将任意函数转换为链式调用。这在功能上等同于将函数包装在RunnableLambda
构造函数中,如上所示。以下是一个示例:
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import chain
prompt1 = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
prompt2 = ChatPromptTemplate.from_template("What is the subject of this joke: {joke}")
@chain
def custom_chain(text):
prompt_val1 = prompt1.invoke({"topic": text})
output1 = ChatOpenAI().invoke(prompt_val1)
parsed_output1 = StrOutputParser().invoke(output1)
chain2 = prompt2 | ChatOpenAI() | StrOutputParser()
return chain2.invoke({"joke": parsed_output1})
custom_chain.invoke("bears")
'The subject of the joke is the bear and his girlfriend.'
在上面,@chain
装饰器用于将 custom_chain
转换为可运行的,我们使用 .invoke()
方法来调用它。
如果您正在使用LangSmith进行跟踪,您应该会看到一个custom_chain
跟踪,其中嵌套了对OpenAI的调用。
链式中的自动强制转换
在使用管道操作符(|
)的链中使用自定义函数时,您可以省略RunnableLambda
或@chain
构造函数,并依赖强制转换。这里有一个简单的例子,使用一个函数从模型中获取输出并返回前五个字母:
prompt = ChatPromptTemplate.from_template("tell me a story about {topic}")
model = ChatOpenAI()
chain_with_coerced_function = prompt | model | (lambda x: x.content[:5])
chain_with_coerced_function.invoke({"topic": "bears"})
'Once '
请注意,我们不需要将自定义函数 (lambda x: x.content[:5])
包装在 RunnableLambda
构造函数中,因为管道操作符左侧的 model
已经是一个 Runnable。自定义函数被强制转换为一个可运行的对象。有关更多信息,请参见 此部分。
传递运行元数据
可运行的 lambda 可以选择性地接受一个 RunnableConfig 参数,它们可以使用该参数将回调、标签和其他配置信息传递给嵌套的运行。
import json
from langchain_core.runnables import RunnableConfig
def parse_or_fix(text: str, config: RunnableConfig):
fixing_chain = (
ChatPromptTemplate.from_template(
"Fix the following text:\n\n\`\`\`text\n{input}\n\`\`\`\nError: {error}"
" Don't narrate, just respond with the fixed data."
)
| model
| StrOutputParser()
)
for _ in range(3):
try:
return json.loads(text)
except Exception as e:
text = fixing_chain.invoke({"input": text, "error": e}, config)
return "Failed to parse"
from langchain_community.callbacks import get_openai_callback
with get_openai_callback() as cb:
output = RunnableLambda(parse_or_fix).invoke(
"{foo: bar}", {"tags": ["my-tag"], "callbacks": [cb]}
)
print(output)
print(cb)
{'foo': 'bar'}
Tokens Used: 62
Prompt Tokens: 56
Completion Tokens: 6
Successful Requests: 1
Total Cost (USD): $9.6e-05
from langchain_community.callbacks import get_openai_callback
with get_openai_callback() as cb:
output = RunnableLambda(parse_or_fix).invoke(
"{foo: bar}", {"tags": ["my-tag"], "callbacks": [cb]}
)
print(output)
print(cb)
{'foo': 'bar'}
Tokens Used: 62
Prompt Tokens: 56
Completion Tokens: 6
Successful Requests: 1
Total Cost (USD): $9.6e-05
流处理
RunnableLambda 最适合不需要支持流式处理的代码。如果你需要支持流式处理(即能够操作输入块并生成输出块),请使用 RunnableGenerator,如下例所示。
你可以在链中使用生成器函数(即使用yield
关键字的函数,并且表现得像迭代器)。
这些生成器的签名应该是 Iterator[Input] -> Iterator[Output]
。或者对于异步生成器:AsyncIterator[Input] -> AsyncIterator[Output]
。
这些适用于:
- 实现自定义输出解析器
- 修改前一步的输出,同时保留流式处理能力
这是一个用于逗号分隔列表的自定义输出解析器的示例。首先,我们创建一个生成此类列表为文本的链:
from typing import Iterator, List
prompt = ChatPromptTemplate.from_template(
"Write a comma-separated list of 5 animals similar to: {animal}. Do not include numbers"
)
str_chain = prompt | model | StrOutputParser()
for chunk in str_chain.stream({"animal": "bear"}):
print(chunk, end="", flush=True)
lion, tiger, wolf, gorilla, panda
接下来,我们定义一个自定义函数,该函数将聚合当前流式传输的输出,并在模型生成列表中的下一个逗号时产生它:
# This is a custom parser that splits an iterator of llm tokens
# into a list of strings separated by commas
def split_into_list(input: Iterator[str]) -> Iterator[List[str]]:
# hold partial input until we get a comma
buffer = ""
for chunk in input:
# add current chunk to buffer
buffer += chunk
# while there are commas in the buffer
while "," in buffer:
# split buffer on comma
comma_index = buffer.index(",")
# yield everything before the comma
yield [buffer[:comma_index].strip()]
# save the rest for the next iteration
buffer = buffer[comma_index + 1 :]
# yield the last chunk
yield [buffer.strip()]
list_chain = str_chain | split_into_list
for chunk in list_chain.stream({"animal": "bear"}):
print(chunk, flush=True)
['lion']
['tiger']
['wolf']
['gorilla']
['raccoon']
调用它会给出一个完整的值数组:
list_chain.invoke({"animal": "bear"})
['lion', 'tiger', 'wolf', 'gorilla', 'raccoon']
异步版本
如果你在一个async
环境中工作,这里是上述示例的async
版本:
from typing import AsyncIterator
async def asplit_into_list(
input: AsyncIterator[str],
) -> AsyncIterator[List[str]]: # async def
buffer = ""
async for (
chunk
) in input: # `input` is a `async_generator` object, so use `async for`
buffer += chunk
while "," in buffer:
comma_index = buffer.index(",")
yield [buffer[:comma_index].strip()]
buffer = buffer[comma_index + 1 :]
yield [buffer.strip()]
list_chain = str_chain | asplit_into_list
async for chunk in list_chain.astream({"animal": "bear"}):
print(chunk, flush=True)
['lion']
['tiger']
['wolf']
['gorilla']
['panda']
await list_chain.ainvoke({"animal": "bear"})
['lion', 'tiger', 'wolf', 'gorilla', 'panda']
下一步
现在你已经学会了在链中使用自定义逻辑的几种不同方法,以及如何实现流式处理。
要了解更多信息,请参阅本节中关于可运行项的其他操作指南。