Skip to main content
Open In ColabOpen on GitHub

在进行SQL问答时如何处理大型数据库

为了编写有效的数据库查询,我们需要向模型提供表名、表模式和特征值以供其查询。当存在许多表、列和/或高基数列时,我们无法在每个提示中转储关于数据库的完整信息。相反,我们必须找到方法,动态地将最相关的信息插入到提示中。

在本指南中,我们演示了识别此类相关信息并将其输入到查询生成步骤中的方法。我们将涵盖:

  1. 识别相关表格的子集;
  2. 识别列值的相关子集。

设置

首先,获取所需的包并设置环境变量:

%pip install --upgrade --quiet  langchain langchain-community langchain-openai
# Uncomment the below to use LangSmith. Not required.
# import os
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"

下面的示例将使用带有Chinook数据库的SQLite连接。按照这些安装步骤在与本笔记本相同的目录中创建Chinook.db

  • 此文件另存为Chinook_Sqlite.sql
  • 运行 sqlite3 Chinook.db
  • 运行 .read Chinook_Sqlite.sql
  • 测试 SELECT * FROM Artist LIMIT 10;

现在,Chinook.db 已经在我们的目录中,我们可以使用 SQLAlchemy 驱动的 SQLDatabase 类与之交互:

from langchain_community.utilities import SQLDatabase

db = SQLDatabase.from_uri("sqlite:///Chinook.db")
print(db.dialect)
print(db.get_usable_table_names())
print(db.run("SELECT * FROM Artist LIMIT 10;"))
API Reference:SQLDatabase
sqlite
['Album', 'Artist', 'Customer', 'Employee', 'Genre', 'Invoice', 'InvoiceLine', 'MediaType', 'Playlist', 'PlaylistTrack', 'Track']
[(1, 'AC/DC'), (2, 'Accept'), (3, 'Aerosmith'), (4, 'Alanis Morissette'), (5, 'Alice In Chains'), (6, 'Antônio Carlos Jobim'), (7, 'Apocalyptica'), (8, 'Audioslave'), (9, 'BackBeat'), (10, 'Billy Cobham')]

许多表格

我们需要在提示中包含的主要信息之一是相关表的模式。当我们有很多表时,我们无法将所有模式都放入一个提示中。在这种情况下,我们可以首先提取与用户输入相关的表的名称,然后仅包含它们的模式。

一个简单可靠的方法是使用tool-calling。下面,我们展示了如何使用此功能来获得符合所需格式的输出(在这种情况下,是表名的列表)。我们使用聊天模型的.bind_tools方法将工具绑定为Pydantic格式,并将其输入到输出解析器中,以从模型的响应中重建对象。

pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini")
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field


class Table(BaseModel):
"""Table in SQL database."""

name: str = Field(description="Name of table in SQL database.")


table_names = "\n".join(db.get_usable_table_names())
system = f"""Return the names of ALL the SQL tables that MIGHT be relevant to the user question. \
The tables are:

{table_names}

Remember to include ALL POTENTIALLY RELEVANT tables, even if you're not sure that they're needed."""

prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{input}"),
]
)
llm_with_tools = llm.bind_tools([Table])
output_parser = PydanticToolsParser(tools=[Table])

table_chain = prompt | llm_with_tools | output_parser

table_chain.invoke({"input": "What are all the genres of Alanis Morisette songs"})
[Table(name='Genre')]

这工作得很好!不过,正如我们下面将看到的,我们实际上还需要一些其他表。仅凭用户的问题,模型很难知道这一点。在这种情况下,我们可能会考虑通过将表分组来简化模型的工作。我们只需让模型在“音乐”和“商业”类别之间进行选择,然后从那里负责选择所有相关的表:

system = """Return the names of any SQL tables that are relevant to the user question.
The tables are:

Music
Business
"""

prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{input}"),
]
)

category_chain = prompt | llm_with_tools | output_parser
category_chain.invoke({"input": "What are all the genres of Alanis Morisette songs"})
[Table(name='Music'), Table(name='Business')]
from typing import List


def get_tables(categories: List[Table]) -> List[str]:
tables = []
for category in categories:
if category.name == "Music":
tables.extend(
[
"Album",
"Artist",
"Genre",
"MediaType",
"Playlist",
"PlaylistTrack",
"Track",
]
)
elif category.name == "Business":
tables.extend(["Customer", "Employee", "Invoice", "InvoiceLine"])
return tables


table_chain = category_chain | get_tables
table_chain.invoke({"input": "What are all the genres of Alanis Morisette songs"})
['Album',
'Artist',
'Genre',
'MediaType',
'Playlist',
'PlaylistTrack',
'Track',
'Customer',
'Employee',
'Invoice',
'InvoiceLine']

现在我们已经有了一个可以为任何查询输出相关表的链,我们可以将其与我们的create_sql_query_chain结合使用,它可以接受一个table_names_to_use列表来确定提示中包含哪些表模式:

from operator import itemgetter

from langchain.chains import create_sql_query_chain
from langchain_core.runnables import RunnablePassthrough

query_chain = create_sql_query_chain(llm, db)
# Convert "question" key to the "input" key expected by current table_chain.
table_chain = {"input": itemgetter("question")} | table_chain
# Set table_names_to_use using table_chain.
full_chain = RunnablePassthrough.assign(table_names_to_use=table_chain) | query_chain
query = full_chain.invoke(
{"question": "What are all the genres of Alanis Morisette songs"}
)
print(query)
SELECT DISTINCT "g"."Name"
FROM "Genre" g
JOIN "Track" t ON "g"."GenreId" = "t"."GenreId"
JOIN "Album" a ON "t"."AlbumId" = "a"."AlbumId"
JOIN "Artist" ar ON "a"."ArtistId" = "ar"."ArtistId"
WHERE "ar"."Name" = 'Alanis Morissette'
LIMIT 5;
db.run(query)
"[('Rock',)]"

我们可以看到这次运行的LangSmith跟踪这里

我们已经看到了如何在链中动态地包含表模式的子集。解决这个问题的另一种可能的方法是让代理自己决定何时通过给它一个工具来查找表。你可以在SQL: 代理指南中看到一个这样的例子。

高基数列

为了过滤包含专有名词(如地址、歌曲名称或艺术家)的列,我们首先需要仔细检查拼写,以便正确过滤数据。

一种简单的策略是创建一个包含数据库中所有不同专有名词的向量存储。然后,我们可以在每次用户输入时查询该向量存储,并将最相关的专有名词注入到提示中。

首先,我们需要每个实体的唯一值,为此我们定义了一个函数,将结果解析为元素列表:

import ast
import re


def query_as_list(db, query):
res = db.run(query)
res = [el for sub in ast.literal_eval(res) for el in sub if el]
res = [re.sub(r"\b\d+\b", "", string).strip() for string in res]
return res


proper_nouns = query_as_list(db, "SELECT Name FROM Artist")
proper_nouns += query_as_list(db, "SELECT Title FROM Album")
proper_nouns += query_as_list(db, "SELECT Name FROM Genre")
len(proper_nouns)
proper_nouns[:5]
['AC/DC', 'Accept', 'Aerosmith', 'Alanis Morissette', 'Alice In Chains']

现在我们可以将所有值嵌入并存储在向量数据库中:

from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

vector_db = FAISS.from_texts(proper_nouns, OpenAIEmbeddings())
retriever = vector_db.as_retriever(search_kwargs={"k": 15})
API Reference:FAISS | OpenAIEmbeddings

并构建一个查询构造链,首先从数据库中检索值并将其插入到提示中:

from operator import itemgetter

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough

system = """You are a SQLite expert. Given an input question, create a syntactically
correct SQLite query to run. Unless otherwise specificed, do not return more than
{top_k} rows.

Only return the SQL query with no markup or explanation.

Here is the relevant table info: {table_info}

Here is a non-exhaustive list of possible feature values. If filtering on a feature
value make sure to check its spelling against this list first:

{proper_nouns}
"""

prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{input}")])

query_chain = create_sql_query_chain(llm, db, prompt=prompt)
retriever_chain = (
itemgetter("question")
| retriever
| (lambda docs: "\n".join(doc.page_content for doc in docs))
)
chain = RunnablePassthrough.assign(proper_nouns=retriever_chain) | query_chain

为了尝试我们的链,让我们看看当我们尝试在没有和有检索的情况下过滤“elenis moriset”(Alanis Morissette的拼写错误)时会发生什么:

# Without retrieval
query = query_chain.invoke(
{"question": "What are all the genres of elenis moriset songs", "proper_nouns": ""}
)
print(query)
db.run(query)
SELECT DISTINCT g.Name 
FROM Track t
JOIN Album a ON t.AlbumId = a.AlbumId
JOIN Artist ar ON a.ArtistId = ar.ArtistId
JOIN Genre g ON t.GenreId = g.GenreId
WHERE ar.Name = 'Elenis Moriset';
''
# Without retrieval
query = query_chain.invoke(
{"question": "What are all the genres of elenis moriset songs", "proper_nouns": ""}
)
print(query)
db.run(query)
SELECT DISTINCT Genre.Name
FROM Genre
JOIN Track ON Genre.GenreId = Track.GenreId
JOIN Album ON Track.AlbumId = Album.AlbumId
JOIN Artist ON Album.ArtistId = Artist.ArtistId
WHERE Artist.Name = 'Elenis Moriset'
''
# With retrieval
query = chain.invoke({"question": "What are all the genres of elenis moriset songs"})
print(query)
db.run(query)
SELECT DISTINCT g.Name
FROM Genre g
JOIN Track t ON g.GenreId = t.GenreId
JOIN Album a ON t.AlbumId = a.AlbumId
JOIN Artist ar ON a.ArtistId = ar.ArtistId
WHERE ar.Name = 'Alanis Morissette';
"[('Rock',)]"

我们可以看到,通过检索,我们能够将拼写从“Elenis Moriset”更正为“Alanis Morissette”,并返回一个有效的结果。

解决这个问题的另一种方法是让代理自行决定何时查找专有名词。你可以在SQL: 代理指南中看到一个这样的例子。


这个页面有帮助吗?