如何对CSV文件进行问答
LLMs非常适合构建基于各种数据源的问题回答系统。在本节中,我们将介绍如何构建基于存储在CSV文件中的数据的问题回答系统。与使用SQL数据库类似,处理CSV文件的关键是让LLM能够访问查询和交互数据的工具。实现这一点的两种主要方式是:
- 推荐: 将CSV文件加载到SQL数据库中,并使用SQL教程中概述的方法。
- 让LLM访问一个Python环境,在那里它可以使用像Pandas这样的库来与数据交互。
我们将在本指南中涵盖这两种方法。
⚠️ 安全提示 ⚠️
上述两种方法都存在重大风险。使用SQL需要执行模型生成的SQL查询。使用像Pandas这样的库需要让模型执行Python代码。由于严格限制SQL连接权限和清理SQL查询比沙盒化Python环境更容易,我们强烈建议通过SQL与CSV数据进行交互。有关一般安全最佳实践的更多信息,请参见此处。
设置
本指南的依赖项:
%pip install -qU langchain langchain-openai langchain-community langchain-experimental pandas
设置所需的环境变量:
# Using LangSmith is recommended but not required. Uncomment below lines to use.
# import os
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
下载泰坦尼克号数据集,如果你还没有它:
!wget https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv -O titanic.csv
import pandas as pd
df = pd.read_csv("titanic.csv")
print(df.shape)
print(df.columns.tolist())
(887, 8)
['Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Siblings/Spouses Aboard', 'Parents/Children Aboard', 'Fare']
SQL
使用SQL与CSV数据进行交互是推荐的方法,因为与任意Python相比,限制权限和清理查询更容易。
大多数SQL数据库使得将CSV文件加载为表格变得容易(DuckDB, SQLite等)。一旦完成此操作,您就可以使用SQL教程中概述的所有链和代理创建技术。以下是一个如何使用SQLite进行此操作的快速示例:
from langchain_community.utilities import SQLDatabase
from sqlalchemy import create_engine
engine = create_engine("sqlite:///titanic.db")
df.to_sql("titanic", engine, index=False)
887
db = SQLDatabase(engine=engine)
print(db.dialect)
print(db.get_usable_table_names())
print(db.run("SELECT * FROM titanic WHERE Age < 2;"))
sqlite
['titanic']
[(1, 2, 'Master. Alden Gates Caldwell', 'male', 0.83, 0, 2, 29.0), (0, 3, 'Master. Eino Viljami Panula', 'male', 1.0, 4, 1, 39.6875), (1, 3, 'Miss. Eleanor Ileen Johnson', 'female', 1.0, 1, 1, 11.1333), (1, 2, 'Master. Richard F Becker', 'male', 1.0, 2, 1, 39.0), (1, 1, 'Master. Hudson Trevor Allison', 'male', 0.92, 1, 2, 151.55), (1, 3, 'Miss. Maria Nakid', 'female', 1.0, 0, 2, 15.7417), (0, 3, 'Master. Sidney Leonard Goodwin', 'male', 1.0, 5, 2, 46.9), (1, 3, 'Miss. Helene Barbara Baclini', 'female', 0.75, 2, 1, 19.2583), (1, 3, 'Miss. Eugenie Baclini', 'female', 0.75, 2, 1, 19.2583), (1, 2, 'Master. Viljo Hamalainen', 'male', 0.67, 1, 1, 14.5), (1, 3, 'Master. Bertram Vere Dean', 'male', 1.0, 1, 2, 20.575), (1, 3, 'Master. Assad Alexander Thomas', 'male', 0.42, 0, 1, 8.5167), (1, 2, 'Master. Andre Mallet', 'male', 1.0, 0, 2, 37.0042), (1, 2, 'Master. George Sibley Richards', 'male', 0.83, 1, 1, 18.75)]
并创建一个SQL代理与之交互:
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
from langchain_community.agent_toolkits import create_sql_agent
agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True)
agent_executor.invoke({"input": "what's the average age of survivors"})
[1m> Entering new SQL Agent Executor chain...[0m
[32;1m[1;3m
Invoking: `sql_db_list_tables` with `{}`
[0m[38;5;200m[1;3mtitanic[0m[32;1m[1;3m
Invoking: `sql_db_schema` with `{'table_names': 'titanic'}`
[0m[33;1m[1;3m
CREATE TABLE titanic (
"Survived" BIGINT,
"Pclass" BIGINT,
"Name" TEXT,
"Sex" TEXT,
"Age" FLOAT,
"Siblings/Spouses Aboard" BIGINT,
"Parents/Children Aboard" BIGINT,
"Fare" FLOAT
)
/*
3 rows from titanic table:
Survived Pclass Name Sex Age Siblings/Spouses Aboard Parents/Children Aboard Fare
0 3 Mr. Owen Harris Braund male 22.0 1 0 7.25
1 1 Mrs. John Bradley (Florence Briggs Thayer) Cumings female 38.0 1 0 71.2833
1 3 Miss. Laina Heikkinen female 26.0 0 0 7.925
*/[0m[32;1m[1;3m
Invoking: `sql_db_query` with `{'query': 'SELECT AVG(Age) AS Average_Age FROM titanic WHERE Survived = 1'}`
[0m[36;1m[1;3m[(28.408391812865496,)][0m[32;1m[1;3mThe average age of survivors in the Titanic dataset is approximately 28.41 years.[0m
[1m> Finished chain.[0m
{'input': "what's the average age of survivors",
'output': 'The average age of survivors in the Titanic dataset is approximately 28.41 years.'}
这种方法很容易推广到多个CSV文件,因为我们可以将每个文件作为自己的表加载到数据库中。请参阅下面的多个CSV文件部分。
Pandas
除了SQL,我们还可以使用数据分析库如pandas和LLMs的代码生成能力来与CSV数据进行交互。再次强调,除非你有广泛的安全措施,否则这种方法不适合生产环境使用。因此,我们的代码执行工具和构造函数位于langchain-experimental
包中。
链
大多数LLM已经在足够的pandas Python代码上进行了训练,以至于它们只需被要求就可以生成它:
ai_msg = llm.invoke(
"I have a pandas DataFrame 'df' with columns 'Age' and 'Fare'. Write code to compute the correlation between the two columns. Return Markdown for a Python code snippet and nothing else."
)
print(ai_msg.content)
\`\`\`python
correlation = df['Age'].corr(df['Fare'])
correlation
\`\`\`
我们可以将这种能力与一个执行Python的工具结合起来,创建一个简单的数据分析链。我们首先需要将我们的CSV表加载为数据框,并让工具访问这个数据框:
import pandas as pd
from langchain_core.prompts import ChatPromptTemplate
from langchain_experimental.tools import PythonAstREPLTool
df = pd.read_csv("titanic.csv")
tool = PythonAstREPLTool(locals={"df": df})
tool.invoke("df['Fare'].mean()")
32.30542018038331
为了帮助确保正确使用我们的Python工具,我们将使用工具调用:
llm_with_tools = llm.bind_tools([tool], tool_choice=tool.name)
response = llm_with_tools.invoke(
"I have a dataframe 'df' and want to know the correlation between the 'Age' and 'Fare' columns"
)
response
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_SBrK246yUbdnJemXFC8Iod05', 'function': {'arguments': '{"query":"df.corr()[\'Age\'][\'Fare\']"}', 'name': 'python_repl_ast'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 125, 'total_tokens': 138}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, id='run-1fd332ba-fa72-4351-8182-d464e7368311-0', tool_calls=[{'name': 'python_repl_ast', 'args': {'query': "df.corr()['Age']['Fare']"}, 'id': 'call_SBrK246yUbdnJemXFC8Iod05'}])
response.tool_calls
[{'name': 'python_repl_ast',
'args': {'query': "df.corr()['Age']['Fare']"},
'id': 'call_SBrK246yUbdnJemXFC8Iod05'}]
我们将添加一个工具输出解析器来提取函数调用作为一个字典:
from langchain_core.output_parsers.openai_tools import JsonOutputKeyToolsParser
parser = JsonOutputKeyToolsParser(key_name=tool.name, first_tool_only=True)
(llm_with_tools | parser).invoke(
"I have a dataframe 'df' and want to know the correlation between the 'Age' and 'Fare' columns"
)
{'query': "df[['Age', 'Fare']].corr()"}
并结合提示,以便我们只需指定问题,而无需在每次调用时指定数据框信息:
system = f"""You have access to a pandas dataframe `df`. \
Here is the output of `df.head().to_markdown()`:
\`\`\`
{df.head().to_markdown()}
\`\`\`
Given a user question, write the Python code to answer it. \
Return ONLY the valid Python code and nothing else. \
Don't assume you have access to any libraries other than built-in Python ones and pandas."""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
code_chain = prompt | llm_with_tools | parser
code_chain.invoke({"question": "What's the correlation between age and fare"})
{'query': "df[['Age', 'Fare']].corr()"}
最后,我们将添加我们的Python工具,以便实际执行生成的代码:
chain = prompt | llm_with_tools | parser | tool
chain.invoke({"question": "What's the correlation between age and fare"})
0.11232863699941621
就这样,我们有了一个简单的数据分析链。我们可以通过查看LangSmith跟踪来查看中间步骤:https://smith.langchain.com/public/b1309290-7212-49b7-bde2-75b39a32b49a/r
我们可以在最后添加一个额外的LLM调用来生成对话响应,这样我们就不仅仅是响应工具的输出。为此,我们需要在提示中添加一个聊天历史MessagesPlaceholder
:
from operator import itemgetter
from langchain_core.messages import ToolMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
system = f"""You have access to a pandas dataframe `df`. \
Here is the output of `df.head().to_markdown()`:
\`\`\`
{df.head().to_markdown()}
\`\`\`
Given a user question, write the Python code to answer it. \
Don't assume you have access to any libraries other than built-in Python ones and pandas.
Respond directly to the question once you have enough information to answer it."""
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
system,
),
("human", "{question}"),
# This MessagesPlaceholder allows us to optionally append an arbitrary number of messages
# at the end of the prompt using the 'chat_history' arg.
MessagesPlaceholder("chat_history", optional=True),
]
)
def _get_chat_history(x: dict) -> list:
"""Parse the chain output up to this point into a list of chat history messages to insert in the prompt."""
ai_msg = x["ai_msg"]
tool_call_id = x["ai_msg"].additional_kwargs["tool_calls"][0]["id"]
tool_msg = ToolMessage(tool_call_id=tool_call_id, content=str(x["tool_output"]))
return [ai_msg, tool_msg]
chain = (
RunnablePassthrough.assign(ai_msg=prompt | llm_with_tools)
.assign(tool_output=itemgetter("ai_msg") | parser | tool)
.assign(chat_history=_get_chat_history)
.assign(response=prompt | llm | StrOutputParser())
.pick(["tool_output", "response"])
)
chain.invoke({"question": "What's the correlation between age and fare"})
{'tool_output': 0.11232863699941616,
'response': 'The correlation between age and fare is approximately 0.1123.'}
这是本次运行的LangSmith跟踪:https://smith.langchain.com/public/14e38d70-45b1-4b81-8477-9fd2b7c07ea6/r
代理
对于复杂的问题,LLM能够在保持其先前执行的输入和输出的同时迭代执行代码是非常有帮助的。这就是代理发挥作用的地方。它们允许LLM决定工具需要被调用多少次,并跟踪它到目前为止的执行情况。create_pandas_dataframe_agent是一个内置的代理,使得处理数据框变得容易:
from langchain_experimental.agents import create_pandas_dataframe_agent
agent = create_pandas_dataframe_agent(
llm, df, agent_type="openai-tools", verbose=True, allow_dangerous_code=True
)
agent.invoke(
{
"input": "What's the correlation between age and fare? is that greater than the correlation between fare and survival?"
}
)
[1m> Entering new AgentExecutor chain...[0m
[32;1m[1;3m
Invoking: `python_repl_ast` with `{'query': "df[['Age', 'Fare']].corr().iloc[0,1]"}`
[0m[36;1m[1;3m0.11232863699941621[0m[32;1m[1;3m
Invoking: `python_repl_ast` with `{'query': "df[['Fare', 'Survived']].corr().iloc[0,1]"}`
[0m[36;1m[1;3m0.2561785496289603[0m[32;1m[1;3mThe correlation between Age and Fare is approximately 0.112, and the correlation between Fare and Survival is approximately 0.256.
Therefore, the correlation between Fare and Survival (0.256) is greater than the correlation between Age and Fare (0.112).[0m
[1m> Finished chain.[0m
{'input': "What's the correlation between age and fare? is that greater than the correlation between fare and survival?",
'output': 'The correlation between Age and Fare is approximately 0.112, and the correlation between Fare and Survival is approximately 0.256.\n\nTherefore, the correlation between Fare and Survival (0.256) is greater than the correlation between Age and Fare (0.112).'}
这是本次运行的LangSmith跟踪:https://smith.langchain.com/public/6a86aee2-4f22-474a-9264-bd4c7283e665/r
多个CSV文件
为了处理多个CSV(或数据框),我们只需要将多个数据框传递给我们的Python工具。我们的create_pandas_dataframe_agent
构造函数可以直接做到这一点,我们可以传入一个数据框列表,而不仅仅是一个。如果我们自己构建一个链,我们可以这样做:
df_1 = df[["Age", "Fare"]]
df_2 = df[["Fare", "Survived"]]
tool = PythonAstREPLTool(locals={"df_1": df_1, "df_2": df_2})
llm_with_tool = llm.bind_tools(tools=[tool], tool_choice=tool.name)
df_template = """\`\`\`python
{df_name}.head().to_markdown()
>>> {df_head}
\`\`\`"""
df_context = "\n\n".join(
df_template.format(df_head=_df.head().to_markdown(), df_name=df_name)
for _df, df_name in [(df_1, "df_1"), (df_2, "df_2")]
)
system = f"""You have access to a number of pandas dataframes. \
Here is a sample of rows from each dataframe and the python code that was used to generate the sample:
{df_context}
Given a user question about the dataframes, write the Python code to answer it. \
Don't assume you have access to any libraries other than built-in Python ones and pandas. \
Make sure to refer only to the variables mentioned above."""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
chain = prompt | llm_with_tool | parser | tool
chain.invoke(
{
"question": "return the difference in the correlation between age and fare and the correlation between fare and survival"
}
)
0.14384991262954416
这是本次运行的LangSmith跟踪:https://smith.langchain.com/public/cc2a7d7f-7c5a-4e77-a10c-7b5420fcd07f/r
沙盒代码执行
有许多工具如E2B和Bearly提供了Python代码执行的沙盒环境,以实现更安全的代码执行链和代理。
下一步
对于更高级的数据分析应用,我们建议查看:
- SQL tutorial: 处理SQL数据库和CSV文件的许多挑战对于任何结构化数据类型都是通用的,因此即使你使用Pandas进行CSV数据分析,阅读SQL技术也是有用的。
- 工具使用: 关于在使用调用工具的链和代理时的一般最佳实践的指南
- Agents: 了解构建LLM代理的基础知识。
- 集成:沙盒环境如E2B和Bearly,实用工具如SQLDatabase,相关代理如Spark DataFrame agent。