pandas.core.resample.Resampler.__iter__#
- Resampler.__iter__()[源代码]#
Groupby 迭代器。
- 返回:
- 生成器生成一系列 (名称, 子集对象)
- 对于每个组
例子
对于 SeriesGroupBy:
>>> lst = ["a", "a", "b"] >>> ser = pd.Series([1, 2, 3], index=lst) >>> ser a 1 a 2 b 3 dtype: int64 >>> for x, y in ser.groupby(level=0): ... print(f"{x}\n{y}\n") a a 1 a 2 dtype: int64 b b 3 dtype: int64
对于 DataFrameGroupBy:
>>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"]) >>> df a b c 0 1 2 3 1 1 5 6 2 7 8 9 >>> for x, y in df.groupby(by=["a"]): ... print(f"{x}\n{y}\n") (1,) a b c 0 1 2 3 1 1 5 6 (7,) a b c 2 7 8 9
对于重采样器:
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64 >>> for x, y in ser.resample("MS"): ... print(f"{x}\n{y}\n") 2023-01-01 00:00:00 2023-01-01 1 2023-01-15 2 dtype: int64 2023-02-01 00:00:00 2023-02-01 3 2023-02-15 4 dtype: int64