探索TorchRec分片
创建日期:2022年5月10日 | 最后更新:2022年5月13日 | 最后验证:2024年11月5日
本教程将主要介绍通过EmbeddingPlanner
和DistributedModelParallel
API实现嵌入表的分片方案,并通过显式配置探索不同分片方案对嵌入表的好处。
安装
要求:- python >= 3.7
我们强烈建议在使用torchRec时使用CUDA。如果使用CUDA:- cuda >= 11.0
# install conda to make installying pytorch with cudatoolkit 11.3 easier.
!sudo rm Miniconda3-py37_4.9.2-Linux-x86_64.sh Miniconda3-py37_4.9.2-Linux-x86_64.sh.*
!sudo wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo bash ./Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p /usr/local
# install pytorch with cudatoolkit 11.3
!sudo conda install pytorch cudatoolkit=11.3 -c pytorch-nightly -y
安装torchRec也会安装 FBGEMM,这是一组CUDA 内核和启用了GPU的操作来运行
# install torchrec
!pip3 install torchrec-nightly
安装multiprocess,它与ipython一起工作,用于在colab中进行多进程编程
!pip3 install multiprocess
Colab运行时需要以下步骤来检测添加的共享库。运行时会在/usr/lib中搜索共享库,因此我们将安装在/usr/local/lib/中的库复制过去。这是一个非常必要的步骤,仅在colab运行时。
!sudo cp /usr/local/lib/lib* /usr/lib/
此时重新启动您的运行时,以便新安装的包被识别。 重新启动后立即运行以下步骤,以便python知道在哪里查找包。重新启动运行时后始终运行此步骤。
import sys
sys.path = ['', '/env/python', '/usr/local/lib/python37.zip', '/usr/local/lib/python3.7', '/usr/local/lib/python3.7/lib-dynload', '/usr/local/lib/python3.7/site-packages', './.local/lib/python3.7/site-packages']
分布式设置
由于笔记本环境的限制,我们无法在此运行 SPMD程序,但我们 可以在笔记本内进行多进程处理以模拟设置。用户 在使用Torchrec时应负责设置自己的 SPMD启动器。我们设置了我们的环境,以便基于torch分布的 通信后端可以工作。
import os
import torch
import torchrec
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"
构建我们的嵌入模型
这里我们使用TorchRec提供的 EmbeddingBagCollection 来构建我们的嵌入袋模型,并使用嵌入表。
在这里,我们创建了一个包含四个嵌入包的EmbeddingBagCollection(EBC)。我们有两种类型的表:大表和小表,通过它们的行大小差异来区分:4096 vs 1024。每个表仍然由64维嵌入表示。
我们为表格配置了ParameterConstraints
数据结构,这为模型并行API提供了提示,以帮助决定表格的分片和放置策略。在TorchRec中,我们支持
* table-wise
:将整个表格放置在一个设备上; *
row-wise
:按行维度均匀分片表格,并在通信世界的每个设备上放置一个分片; * column-wise
:
按嵌入维度均匀分片表格,并在通信世界的每个设备上放置一个分片; * table-row-wise
:特殊
分片优化,用于主机内通信,以利用可用的快速机器内设备互连,例如NVLink; * data_parallel
:
为每个设备复制表格;
注意我们最初是如何在设备“meta”上分配EBC的。这将告诉EBC暂时不要分配内存。
from torchrec.distributed.planner.types import ParameterConstraints
from torchrec.distributed.embedding_types import EmbeddingComputeKernel
from torchrec.distributed.types import ShardingType
from typing import Dict
large_table_cnt = 2
small_table_cnt = 2
large_tables=[
torchrec.EmbeddingBagConfig(
name="large_table_" + str(i),
embedding_dim=64,
num_embeddings=4096,
feature_names=["large_table_feature_" + str(i)],
pooling=torchrec.PoolingType.SUM,
) for i in range(large_table_cnt)
]
small_tables=[
torchrec.EmbeddingBagConfig(
name="small_table_" + str(i),
embedding_dim=64,
num_embeddings=1024,
feature_names=["small_table_feature_" + str(i)],
pooling=torchrec.PoolingType.SUM,
) for i in range(small_table_cnt)
]
def gen_constraints(sharding_type: ShardingType = ShardingType.TABLE_WISE) -> Dict[str, ParameterConstraints]:
large_table_constraints = {
"large_table_" + str(i): ParameterConstraints(
sharding_types=[sharding_type.value],
) for i in range(large_table_cnt)
}
small_table_constraints = {
"small_table_" + str(i): ParameterConstraints(
sharding_types=[sharding_type.value],
) for i in range(small_table_cnt)
}
constraints = {**large_table_constraints, **small_table_constraints}
return constraints
ebc = torchrec.EmbeddingBagCollection(
device="cuda",
tables=large_tables + small_tables
)
多进程中的DistributedModelParallel
现在,我们有一个单一进程执行函数,用于模拟一个在SPMD执行期间的工作。
此代码将与其他进程共同分片模型并相应地分配内存。它首先设置进程组,并使用规划器进行嵌入表放置,然后使用DistributedModelParallel
生成分片模型。
def single_rank_execution(
rank: int,
world_size: int,
constraints: Dict[str, ParameterConstraints],
module: torch.nn.Module,
backend: str,
) -> None:
import os
import torch
import torch.distributed as dist
from torchrec.distributed.embeddingbag import EmbeddingBagCollectionSharder
from torchrec.distributed.model_parallel import DistributedModelParallel
from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology
from torchrec.distributed.types import ModuleSharder, ShardingEnv
from typing import cast
def init_distributed_single_host(
rank: int,
world_size: int,
backend: str,
# pyre-fixme[11]: Annotation `ProcessGroup` is not defined as a type.
) -> dist.ProcessGroup:
os.environ["RANK"] = f"{rank}"
os.environ["WORLD_SIZE"] = f"{world_size}"
dist.init_process_group(rank=rank, world_size=world_size, backend=backend)
return dist.group.WORLD
if backend == "nccl":
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
topology = Topology(world_size=world_size, compute_device="cuda")
pg = init_distributed_single_host(rank, world_size, backend)
planner = EmbeddingShardingPlanner(
topology=topology,
constraints=constraints,
)
sharders = [cast(ModuleSharder[torch.nn.Module], EmbeddingBagCollectionSharder())]
plan: ShardingPlan = planner.collective_plan(module, sharders, pg)
sharded_model = DistributedModelParallel(
module,
env=ShardingEnv.from_process_group(pg),
plan=plan,
sharders=sharders,
device=device,
)
print(f"rank:{rank},sharding plan: {plan}")
return sharded_model
多进程执行
现在让我们在代表多个GPU等级的多进程中执行代码。
import multiprocess
def spmd_sharing_simulation(
sharding_type: ShardingType = ShardingType.TABLE_WISE,
world_size = 2,
):
ctx = multiprocess.get_context("spawn")
processes = []
for rank in range(world_size):
p = ctx.Process(
target=single_rank_execution,
args=(
rank,
world_size,
gen_constraints(sharding_type),
ebc,
"nccl"
),
)
p.start()
processes.append(p)
for p in processes:
p.join()
assert 0 == p.exitcode
表级分片
现在让我们在两个进程中执行代码,使用2个GPU。我们可以在计划打印中看到我们的表是如何在GPU之间分片的。每个节点将有一个大表和一个小的表,这表明我们的规划器尝试为嵌入表进行负载平衡。表级分片是许多中小型表在设备之间进行负载平衡的事实上的首选分片方案。
spmd_sharing_simulation(ShardingType.TABLE_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
探索其他分片模式
我们初步探讨了表级分片的样子以及它如何平衡表的放置。现在,我们更细致地探讨分片模式,重点关注负载均衡:行级分片。行级分片专门针对由于嵌入行数增加而导致单个设备无法容纳的大表。它可以解决模型中超大表的放置问题。用户可以在打印的计划日志中的shard_sizes
部分看到,表按行维度被分成两半,分布在两个GPU上。
spmd_sharing_simulation(ShardingType.ROW_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
另一方面,按列处理解决了具有大嵌入维度的表的负载不平衡问题。我们将垂直分割表。用户可以在打印的计划日志中的shard_sizes
部分看到,表按嵌入维度减半,以分配到两个GPU上。
spmd_sharing_simulation(ShardingType.COLUMN_WISE)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
对于table-row-wise
,不幸的是,由于其多主机设置下的操作性质,我们无法模拟它。我们将在未来展示一个Python SPMD示例,以使用table-row-wise
训练模型。
使用数据并行,我们将为所有设备重复表。
spmd_sharing_simulation(ShardingType.DATA_PARALLEL)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}