注意
点击 这里 下载完整的示例代码
学习基础知识 || 快速入门 || 张量 || 数据集和数据加载器 || 变换 || 构建模型 || 自动求导 || 优化 || 保存和加载模型
优化模型参数
创建于:2021年2月9日 | 最后更新:2024年1月31日 | 最后验证:2024年11月5日
现在我们有了模型和数据,是时候通过优化其参数来训练、验证和测试我们的模型了。训练模型是一个迭代过程;在每次迭代中,模型对输出进行猜测,计算其猜测中的误差(损失),收集误差相对于其参数的导数(正如我们在上一节中看到的),并使用梯度下降优化这些参数。有关此过程的更详细说明,请查看3Blue1Brown的反向传播视频。
先决条件代码
我们从之前的章节中加载代码,关于数据集和数据加载器以及构建模型。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz
0%| | 0.00/26.4M [00:00<?, ?B/s]
0%| | 65.5k/26.4M [00:00<01:13, 360kB/s]
1%| | 197k/26.4M [00:00<00:45, 572kB/s]
3%|2 | 721k/26.4M [00:00<00:12, 2.03MB/s]
6%|6 | 1.61M/26.4M [00:00<00:07, 3.39MB/s]
22%|##1 | 5.77M/26.4M [00:00<00:01, 13.5MB/s]
35%|###5 | 9.34M/26.4M [00:00<00:01, 16.4MB/s]
56%|#####6 | 14.8M/26.4M [00:01<00:00, 25.7MB/s]
70%|######9 | 18.4M/26.4M [00:01<00:00, 26.7MB/s]
82%|########1 | 21.6M/26.4M [00:01<00:00, 25.5MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.2MB/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 330kB/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0.00/4.42M [00:00<?, ?B/s]
1%|1 | 65.5k/4.42M [00:00<00:12, 362kB/s]
5%|5 | 229k/4.42M [00:00<00:06, 681kB/s]
21%|## | 918k/4.42M [00:00<00:01, 2.59MB/s]
44%|####3 | 1.93M/4.42M [00:00<00:00, 4.09MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.08MB/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 29.2MB/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw
超参数
超参数是可调整的参数,允许您控制模型优化过程。 不同的超参数值可能会影响模型训练和收敛速度 (read more 关于超参数调优)
- We define the following hyperparameters for training:
训练轮数 - 遍历数据集的次数
批量大小 - 在更新参数之前通过网络传播的数据样本数量
学习率 - 每次批次/周期更新模型参数的量。较小的值会导致学习速度较慢,而较大的值可能会导致训练过程中出现不可预测的行为。
learning_rate = 1e-3
batch_size = 64
epochs = 5
优化循环
一旦我们设置了超参数,我们就可以通过优化循环来训练和优化我们的模型。优化循环的每一次迭代被称为一个epoch。
- Each epoch consists of two main parts:
训练循环 - 遍历训练数据集并尝试收敛到最优参数。
验证/测试循环 - 遍历测试数据集以检查模型性能是否在提高。
让我们简要熟悉一下训练循环中使用的一些概念。跳转到前面查看优化循环的完整实现。
损失函数
当提供一些训练数据时,我们未经训练的网络可能不会给出正确的答案。损失函数衡量了获得的结果与目标值的不相似程度,而我们在训练过程中希望最小化的正是这个损失函数。为了计算损失,我们使用给定数据样本的输入进行预测,并将其与真实的数据标签值进行比较。
常见的损失函数包括用于回归任务的nn.MSELoss(均方误差),以及用于分类的nn.NLLLoss(负对数似然)。nn.CrossEntropyLoss结合了nn.LogSoftmax
和nn.NLLLoss
。
我们将模型的输出logits传递给nn.CrossEntropyLoss
,它将规范化logits并计算预测误差。
# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()
优化器
优化是在每个训练步骤中调整模型参数以减少模型误差的过程。优化算法定义了如何执行此过程(在本例中我们使用随机梯度下降)。
所有优化逻辑都封装在optimizer
对象中。在这里,我们使用SGD优化器;此外,PyTorch中还有许多不同的优化器,如ADAM和RMSProp,它们适用于不同类型的模型和数据。
我们通过注册需要训练的模型参数并传入学习率超参数来初始化优化器。
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
- Inside the training loop, optimization happens in three steps:
调用
optimizer.zero_grad()
来重置模型参数的梯度。默认情况下,梯度会累积;为了防止重复计算,我们在每次迭代时显式地将它们清零。通过调用
loss.backward()
来反向传播预测损失。PyTorch会计算损失相对于每个参数的梯度。一旦我们有了梯度,我们调用
optimizer.step()
来通过反向传播中收集的梯度调整参数。
完整实现
我们定义了train_loop
来循环我们的优化代码,以及test_loop
来根据我们的测试数据评估模型的性能。
def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
# Set the model to training mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), batch * batch_size + len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
我们初始化损失函数和优化器,并将其传递给train_loop
和test_loop
。
请随意增加epoch的数量以跟踪模型性能的提升。
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.298730 [ 64/60000]
loss: 2.289123 [ 6464/60000]
loss: 2.273286 [12864/60000]
loss: 2.269406 [19264/60000]
loss: 2.249603 [25664/60000]
loss: 2.229407 [32064/60000]
loss: 2.227368 [38464/60000]
loss: 2.204261 [44864/60000]
loss: 2.206193 [51264/60000]
loss: 2.166651 [57664/60000]
Test Error:
Accuracy: 50.9%, Avg loss: 2.166725
Epoch 2
-------------------------------
loss: 2.176750 [ 64/60000]
loss: 2.169595 [ 6464/60000]
loss: 2.117500 [12864/60000]
loss: 2.129272 [19264/60000]
loss: 2.079674 [25664/60000]
loss: 2.032928 [32064/60000]
loss: 2.050115 [38464/60000]
loss: 1.985236 [44864/60000]
loss: 1.987887 [51264/60000]
loss: 1.907162 [57664/60000]
Test Error:
Accuracy: 55.9%, Avg loss: 1.915486
Epoch 3
-------------------------------
loss: 1.951612 [ 64/60000]
loss: 1.928685 [ 6464/60000]
loss: 1.815709 [12864/60000]
loss: 1.841552 [19264/60000]
loss: 1.732467 [25664/60000]
loss: 1.692914 [32064/60000]
loss: 1.701714 [38464/60000]
loss: 1.610632 [44864/60000]
loss: 1.632870 [51264/60000]
loss: 1.514263 [57664/60000]
Test Error:
Accuracy: 58.8%, Avg loss: 1.541525
Epoch 4
-------------------------------
loss: 1.616448 [ 64/60000]
loss: 1.582892 [ 6464/60000]
loss: 1.427595 [12864/60000]
loss: 1.487950 [19264/60000]
loss: 1.359332 [25664/60000]
loss: 1.364817 [32064/60000]
loss: 1.371491 [38464/60000]
loss: 1.298706 [44864/60000]
loss: 1.336201 [51264/60000]
loss: 1.232145 [57664/60000]
Test Error:
Accuracy: 62.2%, Avg loss: 1.260237
Epoch 5
-------------------------------
loss: 1.345538 [ 64/60000]
loss: 1.327798 [ 6464/60000]
loss: 1.153802 [12864/60000]
loss: 1.254829 [19264/60000]
loss: 1.117322 [25664/60000]
loss: 1.153248 [32064/60000]
loss: 1.171765 [38464/60000]
loss: 1.110263 [44864/60000]
loss: 1.154467 [51264/60000]
loss: 1.070921 [57664/60000]
Test Error:
Accuracy: 64.1%, Avg loss: 1.089831
Epoch 6
-------------------------------
loss: 1.166889 [ 64/60000]
loss: 1.170514 [ 6464/60000]
loss: 0.979435 [12864/60000]
loss: 1.113774 [19264/60000]
loss: 0.973411 [25664/60000]
loss: 1.015192 [32064/60000]
loss: 1.051113 [38464/60000]
loss: 0.993591 [44864/60000]
loss: 1.039709 [51264/60000]
loss: 0.971077 [57664/60000]
Test Error:
Accuracy: 65.8%, Avg loss: 0.982440
Epoch 7
-------------------------------
loss: 1.045165 [ 64/60000]
loss: 1.070583 [ 6464/60000]
loss: 0.862304 [12864/60000]
loss: 1.022265 [19264/60000]
loss: 0.885213 [25664/60000]
loss: 0.919528 [32064/60000]
loss: 0.972762 [38464/60000]
loss: 0.918728 [44864/60000]
loss: 0.961629 [51264/60000]
loss: 0.904379 [57664/60000]
Test Error:
Accuracy: 66.9%, Avg loss: 0.910167
Epoch 8
-------------------------------
loss: 0.956964 [ 64/60000]
loss: 1.002171 [ 6464/60000]
loss: 0.779057 [12864/60000]
loss: 0.958409 [19264/60000]
loss: 0.827240 [25664/60000]
loss: 0.850262 [32064/60000]
loss: 0.917320 [38464/60000]
loss: 0.868384 [44864/60000]
loss: 0.905506 [51264/60000]
loss: 0.856353 [57664/60000]
Test Error:
Accuracy: 68.3%, Avg loss: 0.858248
Epoch 9
-------------------------------
loss: 0.889765 [ 64/60000]
loss: 0.951220 [ 6464/60000]
loss: 0.717035 [12864/60000]
loss: 0.911042 [19264/60000]
loss: 0.786085 [25664/60000]
loss: 0.798370 [32064/60000]
loss: 0.874939 [38464/60000]
loss: 0.832796 [44864/60000]
loss: 0.863254 [51264/60000]
loss: 0.819742 [57664/60000]
Test Error:
Accuracy: 69.5%, Avg loss: 0.818780
Epoch 10
-------------------------------
loss: 0.836395 [ 64/60000]
loss: 0.910220 [ 6464/60000]
loss: 0.668506 [12864/60000]
loss: 0.874338 [19264/60000]
loss: 0.754805 [25664/60000]
loss: 0.758453 [32064/60000]
loss: 0.840451 [38464/60000]
loss: 0.806153 [44864/60000]
loss: 0.830360 [51264/60000]
loss: 0.790281 [57664/60000]
Test Error:
Accuracy: 71.0%, Avg loss: 0.787271
Done!