You can create a DuckDB user-defined function (UDF) from a Python function so it can be used in SQL queries. Similarly to regular functions, they need to have a name, a return type and parameter types.
Here is an example using a Python function that calls a third-party library.
import duckdb
from duckdb.typing import *
from faker import Faker
def generate_random_name():
fake = Faker()
return fake.name()
duckdb.create_function("random_name", generate_random_name, [], VARCHAR)
res = duckdb.sql("SELECT random_name()").fetchall()
print(res)
# [('Gerald Ashley',)]
Creating Functions
To register a Python UDF, use the create_function
method from a DuckDB connection. Here is the syntax:
import duckdb
con = duckdb.connect()
con.create_function(name, function, parameters, return_type)
The create_function
method takes the following parameters:
- name: A string representing the unique name of the UDF within the connection catalog.
- function: The Python function you wish to register as a UDF.
- parameters: Scalar functions can operate on one or more columns. This parameter takes a list of column types used as input.
- return_type: Scalar functions return one element per row. This parameter specifies the return type of the function.
- type (Optional): DuckDB supports both built-in Python types and PyArrow Tables. By default, built-in types are assumed, but you can specify
type = 'arrow'
to use PyArrow Tables. - null_handling (Optional): By default, null values are automatically handled as Null-In Null-Out. Users can specify a desired behavior for null values by setting
null_handling = 'special'
. - exception_handling (Optional): By default, when an exception is thrown from the Python function, it will be re-thrown in Python. Users can disable this behavior, and instead return
null
, by setting this parameter to'return_null'
- side_effects (Optional): By default, functions are expected to produce the same result for the same input. If the result of a function is impacted by any type of randomness,
side_effects
must be set toTrue
.
To unregister a UDF, you can call the remove_function
method with the UDF name:
con.remove_function(name)
Type Annotation
When the function has type annotation it's often possible to leave out all of the optional parameters.
Using DuckDBPyType
we can implicitly convert many known types to DuckDBs type system.
For example:
import duckdb
def my_function(x: int) -> str:
return x
duckdb.create_function("my_func", my_function)
duckdb.sql("SELECT my_func(42)")
┌─────────────┐
│ my_func(42) │
│ varchar │
├─────────────┤
│ 42 │
└─────────────┘
If only the parameter list types can be inferred, you'll need to pass in None
as parameters
.
Null Handling
By default when functions receive a NULL
value, this instantly returns NULL
, as part of the default NULL
-handling.
When this is not desired, you need to explicitly set this parameter to "special"
.
import duckdb
from duckdb.typing import *
def dont_intercept_null(x):
return 5
duckdb.create_function("dont_intercept", dont_intercept_null, [BIGINT], BIGINT)
res = duckdb.sql("SELECT dont_intercept(NULL)").fetchall()
print(res)
# [(None,)]
duckdb.remove_function("dont_intercept")
duckdb.create_function("dont_intercept", dont_intercept_null, [BIGINT], BIGINT, null_handling="special")
res = duckdb.sql("SELECT dont_intercept(NULL)").fetchall()
print(res)
# [(5,)]
Exception Handling
By default, when an exception is thrown from the Python function, we'll forward (re-throw) the exception.
If you want to disable this behavior, and instead return null, you'll need to set this parameter to "return_null"
import duckdb
from duckdb.typing import *
def will_throw():
raise ValueError("ERROR")
duckdb.create_function("throws", will_throw, [], BIGINT)
try:
res = duckdb.sql("SELECT throws()").fetchall()
except duckdb.InvalidInputException as e:
print(e)
duckdb.create_function("doesnt_throw", will_throw, [], BIGINT, exception_handling="return_null")
res = duckdb.sql("SELECT doesnt_throw()").fetchall()
print(res)
# [(None,)]
Side Effects
By default DuckDB will assume the created function is a pure function, meaning it will produce the same output when given the same input.
If your function does not follow that rule, for example when your function makes use of randomness, then you will need to mark this function as having side_effects
.
For example, this function will produce a new count for every invocation
def count() -> int:
old = count.counter;
count.counter += 1
return old
count.counter = 0
If we create this function without marking it as having side effects, the result will be the following:
con = duckdb.connect()
con.create_function("my_counter", count, side_effects = False)
res = con.sql("SELECT my_counter() FROM range(10)").fetchall()
print(res)
# [(0,), (0,), (0,), (0,), (0,), (0,), (0,), (0,), (0,), (0,)]
Which is obviously not the desired result, when we add side_effects = True
, the result is as we would expect:
con.remove_function("my_counter")
count.counter = 0
con.create_function("my_counter", count, side_effects = True)
res = con.sql("SELECT my_counter() FROM range(10)").fetchall()
print(res)
# [(0,), (1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,), (9,)]
Python Function Types
Currently, two function types are supported, native
(default) and arrow
.
Arrow
If the function is expected to receive arrow arrays, set the type
parameter to 'arrow'
.
This will let the system know to provide arrow arrays of up to STANDARD_VECTOR_SIZE
tuples to the function, and also expect an array of the same amount of tuples to be returned from the function.
Native
When the function type is set to native
the function will be provided with a single tuple at a time, and expect only a single value to be returned.
This can be useful to interact with Python libraries that don't operate on Arrow, such as faker
:
import duckdb
from duckdb.typing import *
from faker import Faker
def random_date():
fake = Faker()
return fake.date_between()
duckdb.create_function("random_date", random_date, [], DATE, type="native")
res = duckdb.sql("SELECT random_date()").fetchall()
print(res)
# [(datetime.date(2019, 5, 15),)]