- Installation
- Documentation
- Overview
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- Configuration
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregate Functions
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Keywords and Identifiers
- Samples
- Window Functions
- PostgreSQL Compatibility
- Extensions
- Overview
- Official Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The CASE statement performs a switch based on a condition. The basic form is identical to the ternary condition used in many programming languages (CASE WHEN cond THEN a ELSE b END is equivalent to cond ? a : b). With a single condition this can be expressed with IF(cond, a, b).
CREATE OR REPLACE TABLE integers AS SELECT unnest([1, 2, 3]) AS i;
SELECT i, CASE WHEN i > 2 THEN 1 ELSE 0 END AS test
FROM integers;
| i | test |
|---|---|
| 1 | 0 |
| 2 | 0 |
| 3 | 1 |
This is equivalent to:
SELECT i, IF(i > 2, 1, 0) AS test
FROM integers;
The WHEN cond THEN expr part of the CASE statement can be chained, whenever any of the conditions returns true for a single tuple, the corresponding expression is evaluated and returned.
CREATE OR REPLACE TABLE integers AS SELECT unnest([1, 2, 3]) AS i;
SELECT i, CASE WHEN i = 1 THEN 10 WHEN i = 2 THEN 20 ELSE 0 END AS test
FROM integers;
| i | test |
|---|---|
| 1 | 10 |
| 2 | 20 |
| 3 | 0 |
The ELSE part of the CASE statement is optional. If no else statement is provided and none of the conditions match, the CASE statement will return NULL.
CREATE OR REPLACE TABLE integers AS SELECT unnest([1, 2, 3]) AS i;
SELECT i, CASE WHEN i = 1 THEN 10 END AS test
FROM integers;
| i | test |
|---|---|
| 1 | 10 |
| 2 | NULL |
| 3 | NULL |
It is also possible to provide an individual expression after the CASE but before the WHEN. When this is done, the CASE statement is effectively transformed into a switch statement.
CREATE OR REPLACE TABLE integers AS SELECT unnest([1, 2, 3]) AS i;
SELECT i, CASE i WHEN 1 THEN 10 WHEN 2 THEN 20 WHEN 3 THEN 30 END AS test
FROM integers;
| i | test |
|---|---|
| 1 | 10 |
| 2 | 20 |
| 3 | 30 |
This is equivalent to:
SELECT i, CASE WHEN i = 1 THEN 10 WHEN i = 2 THEN 20 WHEN i = 3 THEN 30 END AS test
FROM integers;