- Installation
- Documentation
- Overview
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- Configuration
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregate Functions
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Keywords and Identifiers
- Samples
- Window Functions
- PostgreSQL Compatibility
- Extensions
- Overview
- Official Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The UPDATE
statement modifies the values of rows in a table.
Examples
For every row where i
is NULL
, set the value to 0 instead:
UPDATE tbl
SET i = 0
WHERE i IS NULL;
Set all values of i
to 1 and all values of j
to 2:
UPDATE tbl
SET i = 1, j = 2;
Syntax
UPDATE
changes the values of the specified columns in all rows that satisfy the condition. Only the columns to be modified need be mentioned in the SET
clause; columns not explicitly modified retain their previous values.
Update from Other Table
A table can be updated based upon values from another table. This can be done by specifying a table in a FROM
clause, or using a sub-select statement. Both approaches have the benefit of completing the UPDATE
operation in bulk for increased performance.
CREATE OR REPLACE TABLE original AS
SELECT 1 AS key, 'original value' AS value
UNION ALL
SELECT 2 AS key, 'original value 2' AS value;
CREATE OR REPLACE TABLE new AS
SELECT 1 AS key, 'new value' AS value
UNION ALL
SELECT 2 AS key, 'new value 2' AS value;
SELECT *
FROM original;
key | value |
---|---|
1 | original value |
2 | original value 2 |
UPDATE original
SET value = new.value
FROM new
WHERE original.key = new.key;
OR:
UPDATE original
SET value = (
SELECT
new.value
FROM new
WHERE original.key = new.key
);
SELECT *
FROM original;
key | value |
---|---|
1 | new value |
2 | new value 2 |
Update from Same Table
The only difference between this case and the above is that a different table alias must be specified on both the target table and the source table.
In this example AS true_original
and AS new
are both required.
UPDATE original AS true_original
SET value = (
SELECT
new.value || ' a change!' AS value
FROM original AS new
WHERE true_original.key = new.key
);
Update Using Joins
To select the rows to update, UPDATE
statements can use the FROM
clause and express joins via the WHERE
clause. For example:
CREATE TABLE city (name VARCHAR, revenue BIGINT, country_code VARCHAR);
CREATE TABLE country (code VARCHAR, name VARCHAR);
INSERT INTO city VALUES ('Paris', 700, 'FR'), ('Lyon', 200, 'FR'), ('Brussels', 400, 'BE');
INSERT INTO country VALUES ('FR', 'France'), ('BE', 'Belgium');
To increase the revenue of all cities in France, join the city
and the country
tables, and filter on the latter:
UPDATE city
SET revenue = revenue + 100
FROM country
WHERE city.country_code = country.code
AND country.name = 'France';
SELECT *
FROM city;
name | revenue | country_code |
---|---|---|
Paris | 800 | FR |
Lyon | 300 | FR |
Brussels | 400 | BE |
Upsert (Insert or Update)
See the Insert documentation for details.